
A Tutorial on Algol 68

by Andrew S. Tanenbaum

Vakgroep Informatica, Wiskundig Seminariunm, Vrije Universiteit, de
Boelelaan 1081, Amsterdam, The Netherlands

This paper is an introduction to the main features of Algol 68,
emphasizing the novel features not found in many other programming
languages. The topics, data types (modes), type conversion (coercion),
generalized expressions (units), procedures, operators, the standard prelude,
and input/output, form the basis of the paper. The approach is informal,
relying heavily on many short examples. The paper applies to the Revised
Report, published in 1975, rather than to the original report, published in
1969.

Keywords and Phrases: Algol 68, ALGOrithmic Language, expression
languages, programming languages, high-level languages, problem-oriented
languages.

CR Categories: 4.20, 4.22.
Copyright (c) 1976, Association for Computing Machinery, Inc. General

permission to republish, but not for profit, all or part of this material is
granted provided that ACM’s copyright notice is given and that reference
is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing
Machinery.

Originally printed in “Computing Surveys, Vol. 8, No. 2, June 1976, p.
155-190.” Republication permitted by the above copyright notice.

This TEX edition was provided by W. B. Kloke, mailto:klokew@acm.org.
It contains corrections published in “Computing Surveys, Vol. , No. 3,
September 1977, p.255f. .

INTRODUCTION

This paper is an introduction to Algol 68 – in plain English – for the
the nonspecialist. In its short lifetime, Algol 68 has acquired something of
an international reputation for being obscure. An early description of the
language [8] was entitled ”Algol 68 with Fewer Tears”. The feeling has
persisted. One recent author [11] has written, ”The Algol 68 Report is
one of the most unreadable documents which has ever been printed.” It is
our intention demonstrate that Algol 68 is neither inscrutable nor difficult,

1

but rather is on extremely powerful programming language which is easily
learned and which is applicable to a wide variety of problems.

One reason Algol 68 has been slow to be accepted is not hard to
discover. The defining report used a completely new kind of grammar to
define the language, instead of the now familiar and comfortable Backus-
Naur grammar (BNF). This new grammar often called a vW-grammar (in
honor of its inventor, A. van Wijngaarden), is context sensitive rather than
context free. Like many new ideas, it takes some getting used to, just as
BNF grammars did. The new grammar was introduced for some very good
reasons. In particular, it allows not only the syntax, but also that part of the
semantics having to do with declarations to be defined by the grammar. For
example, the nonterminal <program> simply does not generate any program
in which variables are undefined, multiply defined, or defined inconsistently
with their usage. No English prose is needed to say that variables must not
be defined twice, etc. Consequently, W-grammars provide a more complete
and accurate definition than do BNF grammars.

During several years of experience with the language, several trouble
spots came to light, particularly features of the language that were tricky
to implement efficiently. A Revised Report [13] was published in 1975,
describing a slightly modified language that does not have these problems.
Furthermore, the original report itself was completely rewritten, in order to
make it easier to understand. It is the revised language and the Revised
Report that are described in this article. References to sections in the
Revised Report are indicated by the letters rr preceding the section number.

Rather than attempting to explore every nook and cranny of Algol 68,
we concentrate on the major features, illustrating them with many examples.
Readers wishing a book length introduction to Algol 68 are referred to the
books listed in Section 11, Where To From Here?

The Algol 68 Report introduced a veritable cornucopia of new termi-
nology to the computing community, all of which are precisely defined in
the Revised Report (rr 2.1). This was done to force the reader to rely on
the Report’s definitions, rather than to rely on his previous experience with
similar concepts that nonetheless may differ from the Report’s definitions in
subtle, but crucial, ways.

Nevertheless, to avoid inundating the reader, we try to shun when
possible the bus tokens (rr 1.3.3e), invisible production trees (rr 1.1.3.2h),
primal environs (rr 2.2.2a), incestuous unions (rr 4.7), notions (rr

1.1.3.1c), protonotions (rr 1.1.3.1b), metanotions (rr 1.1.3.1d), hypernotions
(rr 1.1.3.1e), paranotions (rr 1.1.4.2), and their ilk, for more familiar
nomenclature. As a starter, we refrain from using ”assignation” when

2

”assignment” does just as nicely, and we use ”integer” rather than ”integral”
as an adjective.

Before plunging into the description of the language itself, it is perhaps
worthwhile to say something about the principles of its design. One of
the key ideas is that of orthogonality. An orthogonal language has a small
number of basic constructions, and rules for combining them in regular and
systematic ways. A very deliberate attempt is made to eliminate arbitrary
restrictions.

The concept of orthogonal design may be made clearer by an example
of nonorthogonal design. Many programming languages (for example, For-

tran, Algol 60, and PL/1) have a concept of data types that includes ar-
rays. They also have a concept of functions as rules for mapping parameters
onto results. Logically one might expect to be able to combine the ”orthogo-
nal” (that is, independent) concepts of data types and functions to construct
functions that take an array as parameter and yield an array as the result.
An arbitrary restriction that allows arrays to be used as parameters but pro-
hibits them to be used as results is an example of nonorthogonal design. A
fundamental principle of Algol 68 is that arbitrary rules like this restriction
are only used to resolve situations which might otherwise be syntactically or
semantically ambiguous.

Another principle, related to that of orthogonality, is the principle of
extensibility. Algol 68 provides a small number of primitive data types, or
modes, as well as mechanisms for the user to extend these in a systematic
way. For example, the programmer may create his own data types and his
own operators to manipulate them. This philosophy may be contrasted with,
say APL, which provides a very large number of standard operators, rather
than a very small number and the machinery for programmers to define new
ones. Together, orthogonality and extensibility tend to produce a ”compact”
yet powerful language.

1. Bird’s-Eye View of Algol 68

In the following subsections we briefly mention some basic features of
Algol 68 that are common to many programming languages in order to be
able to use them in subsequent examples.

1.1 Program Structure

An Algol 68 program consists of a sequence of symbols enclosed by
begin and end, or by parentheses. Some symbols are written in boldface
type to distinguish them as keywords. Other symbols are variable identifiers

3

(written in the same general font that is used in programs) and special
characters such as =/ , =, (), +, -, etc.

Spaces and carriage returns (change to a new card) may be used freely
to improve readability. Spaces are explicitly allowed ”inside” identifiers.
Thus the three little pigs and thethreelittlepigs are the same identifier.
Identifiers (for example, variable names) may be arbitrarily long.

Comments are enclosed between comment symbols, of which four repre-
sentations are allowed: /c, #, co, and comment. The comment must begin and
end with the same comment symbol. A comment may be inserted between
any two symbols.

Algol 68 is a block structured language, like PL/1 and Algol 60.
Blocks and procedures may be nested arbitrarily deep. Declarations may
appear in any block. Semicolons are used to separate statements, similar
to Algol 60 (and in contrast to PL/1, which uses them to terminate
statements).

1.2 Data and Declarations

One of the most basic features of a programming language is the kind
of data that it can manipulate. Algol 68 provides a rich collection of data
types (described in Section 2, Modes). The Algol 68 Report uses the term
mode instead of type, and we do too. Four of the simplest modes are integer,
real (floating point), Boolean, and character. As one might expect, there
are integer, real, Boolean, and character variables. All variables must be
declared. Any variable used but not declared will be flagged by the compiler
as an error. The declaration of a variable consists of a mode, followed by one
or more identifiers. The following program illustrates variable declarations.
An Algol 68 program must contain at least one statement; skip is a
dummy statement that can be used to turn a collection of declarations into a
syntactically valid program.

begin
real e, x, y, z; /c 4 real variables /c
bool maybe; /c 1 boolean variable /c
char first initial, middle initial, grade desired;

/c 3 character variables /c
int i, j, girlfriends; /c 3 integer variables /c
skip /c dummy statement /c

end
Note that the declarations are separated by semicolons. The symbols

int, real, bool, and char are not abbreviations; integer, boolean, and charac-
ter are not allowed (although one can explicitly define them as modes if so

4

desired).

1.3 Statements

Algol 68 is an expression language. This means that every construc-
tion in the language yields a value and in principle can appear on the right-
hand side of an assignment. Nevertheless, certain constructions can also be
used as statements. Among these constructions are assignment statements,
if statements, procedure calls, for statements, while statements, case state-
ments, and goto statements. Since these are all quite familiar from other
programming languages, a few examples, shown in the next column, should
suffice.

A few explanatory notes may be in order. Observe that if
statements are closed by fi (if backwards). This solves the dangling
else problem. Suppose fi were not used. Then the statementif i<0 then
if j<0

then print (˝hello˝) else print (˝goodbye˝)
would be ambiguous, possibly meaning

if i<0
then if j<0 then print (˝hello˝) fi
else print (˝goodbye˝)
fi

or perhaps meaning

if i<0
then if j<0 then print (˝hello˝)

else print (˝goodbye˝)
fi

fi

With the fi there is no ambiguity. Furthermore, since both then and else
parts must be explicitly closed, either may contain an arbitrary number of
statements without the need for begin end as delimiters.

To simplify nested if statements, else if may be contracted to elif,

5

begin /c mentally insert the above declarations here /c
/c assignment statements /c
girlfriends := girlfriends-1;
middle initial := ˝x˝;
e := 2.78;
/c if statements /c
if maybe
then grade desired := ˝d˝
else grade desired := ˝f˝
fi; /c fi delimits if -- see note below /c
if x<0 then x := -x fi;
if i = j+2
then x := pi;

y := 2×e;
z := 3×e

fi;
/c procedure calls /c
/c sum ∧ initialize must be defined elsewhere /c
initialize; /c no parameters /c
sum(x, y, z);
print (grade desired);
/c for -- while statements /c
/c the following 5 statements are all equivalent /c
for k from 1 by 1 to j+3 while true
do print (new line) od;
for k from 1 by 1 to j+3
do print (new line) od;
for k from 1 to j+3
do print (new line) od;
for k to j+3
do print (new line) od;
to j+3
do print (new line) od;
while i<j ∨ i<0
do i := i+1;

j := j+2;
print ((i, j))

od;

/c case statements /c
case i+4 in

j := 0, j := 3, i := i-5, print(i)
esac;
case i in

j := j+3,
if j = 0 then j := i fi,
print (i)

out j := 4
esac;
/c goto statement /c
bed: goto bed
end

6

providing the fi matching the contracted if is deleted. For example,

if word = ˝oui˝
then print (˝french˝)
else if word = ˝yes˝

then print (˝english˝)
else if word = ˝ja˝

then print (˝dutch˝)
else print (˝minor language˝)
fi

fi
fi

can be written as

if word = ˝oui˝
then print (˝french˝)
elif word = ˝yes˝
then print (˝english˝)
elif word = ˝ja˝
then print (˝dutch˝)
else print (˝minor language˝)
fi

Even with elif, begin and end are never needed as delimiters.
The for and while statements shown on page 158 are all special cases

of a general for statement including both counting parts (from. . .by. . . to)
and while parts. The from, by, and to parts are each optional, with default
values of 1,1, and infinity, respectively. Each part may occur only once.
The ”controled variable” following for is automatically an integer; it can
neither be declared nor assigned. If the same identifier occurs outside the
statement, it is a different variable. This makes the controled variable
inaccessible outside the loop (to give the compiler writer more freedom, and
to make correctness proofs easier). Furthermore, the from, by, and to parts
are evaluated once and for all before the loop begins. Subsequent changes
to any of their variables have no effect on the step size or loop termination
condition.

The case statement has an integer expression which selects the first,
second, third, etc., clause if the expression is 1,2,3, etc., respectively. A
clause is a statement (or a group of statements separated by semicolons and
enclosed by begin end or parentheses). The clauses are separated by commas.

7

If an out clause is present, it will be selected when the expression exceeds
the number of clauses or is less than 1. If the out clause is omitted and
the expression is out of range, the case statement is skipped. esac is case
backwards.

Input/output in Algol 68 is performed by calling certain input/output
procedures, rather than by executing special statements. Procedures are pro-
vided for unformatted, formatted, and binary input/output. File and in-
put/output devices can be handled in a consistent and machine-independent
way. We examine these input/output procedures in a later section; for now,
read(x) is used for input and print(x) is used for output. Each of these proce-
dures may be passed a parenthesized list of variables as parameter, for exam-
ple, read((x,y,z)) and print((i,j,x+z)).

(The reason for the extra parentheses is explained later on.) The calls
print(new line) and print(new page) cause subsequent output to begin at the
beginning of the next line or next page, respectively.

A sample Algol 68 program is shown on page 160.

2. MODES

One of the most powerful features of Algol 68 is its rich collection
of data types (modes), and the facilities it provides programmers to define
their own modes. Programmer-defined modes are constructed from primitive
modes, using a few simple rules for creating new modes from old modes.
In the following subsections we examine primitive modes, methods for con-
structing new modes, and finally the mode definition facility in its full glory.

An object is an entity stored in memory during the execution of a
program. Integers and reals are typical objects. Each object has a unique
mode, for example, int, real, bool, or char. Each object also has a value. It
is objects that are assigned to variables. For example, an integer with value
3 (some bit pattern in memory) can be assigned to an integer variable. A
variable should be thought of as a container (memory location) into which
a certain class of objects can be put. Be aware that the container and this
container are distinct kinds of entities.

8

begin /c This program reads two numbers: the price of an item, and the
amount the customer gave to the cashier. It then calculates how
much change he should get, and prints out the correct number of
quarters, dimes, nickels, and pennies, minimizing the number of
coins returned. The program only handles change up to 99 cents.
/c

int price, amount paid, change, quarters, dimes, nickels, pennies;
read ((price, amount paid)); /c read input data /c
change := amount paid - price;
if change > 99 ∨ change < 0
then print (˝input data incorrect˝)
else

if change = 0 /c was the payment exact? /c
then print (˝no change˝)
else /c compute how many of each coin /c

quarters := 0; dimes := 0; nickels := 0;
while change ≥ 25
do quarters := quarters + 1 ;

change := change - 25
od;
while change ≥ 10
do dimes := dimes + 1;

change := change - 10
od;
while change ≥ 5
do nickels := nickels + 1;

change := change - 5
od;
pennies := change

/c print results /c
print ((new page, ˝the change is˝,

new line, quarters, ˝quarters˝,
new line, dimes, ˝dimes˝,
new line, nickels, ˝nickels˝,
new line, pennies, ˝pennies˝,
new line))

fi /c this matches if change = 0. . ./c
fi /c this matches if change > 99. . ./c

end

9

2.1 Primitive Modes
We have already seen how to declare int, real, bool, and char variables.

These are not the only possibilities, however. A list of the predefined modes
with a brief description of each follows:

int integer;
real real number;
char character;
bool boolean;
string string of characters;
compl complex number (2 reals);
bits machine word full of bits;
bytes machine word full of characters;
sema Dijkstra semaphore [4];
format mode used with formatted I/O;
file mode used for input/output.

For some applications, the number of bits in an integer or real is insufficient.
To accommodate these situations, Algol 68 allows primitive modes of long
int, long long int, etc., and long real, long long real, long long long real, etc.
Furthermore, to accommodate applications where very many integers or reals
are needed, but where fewer than the standard number of bits will suffice,
there are modes of short int, short short int and short real, short short real,
etc.

The number of different lengths and the number of bits in each is up to
each Algol 68 compiler writer. However, the number of available lengths
and the size of each is available to programs at run time to facilitate transfer
of programs from one machine to another. For a computer with an 8-bit
byte and a 32-bit word, a typical implementation might have: short short int
(8 bits), short int (16 bits), int (32 bits), long int (64 bits), long long int (96
bits), and long long long int (128 bits).

The mode string defines a string of zero or more characters. Strings may
be arbitrarily long, and strings of any length may be assigned to any string
variable. In PL/1 terms, all strings are of maximum length equal to infinity
and VARYING. The following is a valid Algol 68 program:

begin
string s;
s := ˝ ˝; /c an empty string /c
s := ˝little˝; /c a 6 character string /c
s := ˝hello there, mommies and daddies˝

end

10

The modes bits and bytes are intended to give the programmer the abil-
ity to pack information into machine words to save space. The number of
bits in an object of mode bits is not determined by the programmer, but by
the Algol 68 compiler writer. It is to be expected that in most implemen-
tations an object of mode bits will occupy a full machine word. Operations
are provided, among others, to insert, extract, and test the individual bits.
The mode bytes is similar, providing a way to pack characters into machine
words to save storage. How many characters to pack into a machine word is
a decision left to the implementer. Like int and real, bits and bytes have long
and short versions.

The modes sema, format, and file have specialized uses and are covered
later on.

Algol 68 allows more complex modes to be constructed from other
modes in a variety of ways. Roughly speeking, these ways involve arrays,
structures, procedures, sets, and pointers. We examine each of these in turn.

2.2 Array Modes

Many problems involve data which are organized into vector or matrices.
A vector is a one-dimenisonal sequence of objects, all of which have the same
mode. A matrix is a two-dimensional ordering of objects of the same mode.
Likewise, three, four, and higher dimensional arrays also consist of collections
of objects of the same mode. The elements of an array may be of a primitive
mode, such as int, or they may be of a constructed mode.

The official Algol 68 term for array is multiple value (rr 2.1.3.4);
however, we continue to use the more familiar word ”array.” An array is a
run-time object and therefore has a value and a mode. Array variables exist
and may be declared and assigned values, just as variables of any other mode
are. A one-dimensional array of integers has mode []int, pronounced ”row
of integer”; a two-dimensional array of reals has mode [,]real, pronounced
”row row of real”; a three-dimensional array of characters has mode [,,]char,
pronounced ”row row row of character.” In general, the mode of an n-
dimensional array is an opening square bracket followed by n-1 commas,
a closing square bracket, and then the mode of the elements. Objects of
different dimensions have different modes.

When array variables are declared, the bounds must be specified in order
to allow sufficient space to be reserved. To declare a one-dimensional integer
array variable named ”month” which is to contain an array whose elements
are numbered 1 to 12, one writes

[1:12]int month

11

The lower and upper bounds are integer expressions; they are separated by a
colon. Much as you would expect,

[0 :n-1, 0:n-1]real physicist, chemist

declares physicist and chemist to be n × n real matrices. Note that physicist
is a [,]real variable; the bounds are not part of the mode (unlike Pascal).
Thus if

[1:100, 3:9]real geologist

declares a nonsquare matrix, physicist and geologist have the same mode,
albeit different sizes. The following program declares several variables:

begin int n, m;
read((m, n)); /c read 2 integers /c
/c unlabeled statements may be followed by more declarations, i.e., it is

not necessary to put all declarations first /c
[-n:n]int hamlet; /c size depends on n /c
[1:m, 1:n]real macbeth;
[1:10, 1:10, 1:10]bool othello;
[-100:-80]char richard 3;
[0:9×m + 6×m×n]string henry 8;
/c array elements may themselves be arrays /c
[1 :10][1:5, 1:5]int king lear;
skip /c dummy statement /c

end

Elements of arrays may be extracted by subscripting and trimming (see
Section 3.4, Slices).

In the preceding program, king lear is a 10-element vector, each of whose
elements is a 5×5 square matrix. A vector whose elements are matrices
might be a more natural representation for, say, the successive digitized
frames of television broadcasting, than a three-dimensional array. Note that
king lear[n] can be used anywhere an object of mode [,]int is needed, for
example, as an actual parameter. It can also be subscripted, as in king lear[n]
[2,3], but not as in king lear[n,2,3].

An array variable may be declared to be flexible, in which case arrays
of different sizes may be successively assigned to it, provided they are of
the proper mode. A string variable is actually a flexible one-dimensional
character array variable.

12

2.3 Structured Modes
Arrays are used to group together objects of the same mode. Structures

(an 2.1.3.3) are used to group together objects whose modes need not be
identical. A structure is composed of one or more fields, each having a
name, or more properly, a field selector (rr 4.8.1f). Structures themselves
are objects and have modes. The mode of a structure depends upon the
modes of its fields, their order, and the field selectors. Two structured modes
are the same if and only if the corresponding fields have the same modes and
field selectors. Structured variables exist, and may be assigned to one field at
a time or ”all at once.” Structures are called ”records” in some programming
languages. An example of a structured variable declaration is:

struct (string species, int number of feel, bool makes good pet) beastie

This declares beastie to be a variable with three fields whose field selectors
are: species, number of feet, and makes good pet. To use any of the fields of
beastie, one writes the field selector, followed by the word of, followed by the
name of the structured variable, for example:

species of beastie := ˝brontosaurus˝;
number of feel of beastie := 4;
makes good pet of beastie := false

The extraction of one field of a structure is called selecting. Alternatively, it
is possible to assign all three fields at once by using a structure display (rr

3.3.1h) on the righthand side of the assignment statement, for example:

beastie := (˝guinea pig˝, 4, true)

Some examples of structured variables follow:

begin int n; read(n);
struct (real value, string color, bool leaks, hasfireplace) house;
struct ([1:3]char aircraft type, int wheels, max speed) plane;
struct ([1:3]char area code, [1:7]char phone number) telephone;
/c farm has 3 fields: crop, farmer and dairy /c
struct ([1:n]struct (string variety, real acres) crop, string farmer,

bool dairy) farm;
skip

end

13

2.4 Procedure Modes

In contrast to most programming languages, Algol 68 considers proce-
dures to be objects, complete. with values and modes. Furthermore, there
are procedure variables, to which procedures can be assigned. The mode of a
procedure is uniquely determined by the mode of its parameters (if there are
any) and the mode of the value it returns. A procedure that takes an integer
as a parameter and returns a real as a value has mode proc(int)real. A proce-
dure that takes a character and a Boolean matrix as parameters and returns
a real vector as a value has mode proc(char, [,]bool)[]real.

A procedure that is not used as a function, that is, does not return
any explicit value, is said to return void. For example, a procedure that
accepts an int as parameter and cancels the corresponding flight (in an
airline reservation system) has mode proc(int)void. A procedure which has
no parameters, but which returns a real, such as random, has mode proc real.
A procedure which has no parameters and which delivers no explicit value
has mode proc void.

Both parameters and results may have any mode. Unlike Fortran,
Algol 60, and PL/1, in Algol 68, procedures may yield strings, arrays,
structures, pointers, or any other mode. Furthermore, there is no reason
procedure modes cannot be used as parameters or results. For example, a
procedure used to perform a numerical integration of a real function (that is,
a proc(real)real) between two real limits might have mode

proc(proc(real)real, real, real)real.

The order of the parameters is significant; proc(real,int)void and
proc(int,real)void are different modes. Because there are an infinite number
of combinations of parameters and results, there are an infinite number of
procedure modes, just as there are an infinite number of procedure modes.

As mentioned earlier, procedure variables exist, and can be assigned

14

values. The following program illustrates this feature:

begin real x;
/c f is a proc(real)real variable /c
proc(real)real f;
x := 3.14;
/c sin, cos, and tan are standard /c
f := sin; /c assign sin to f /c
print (f(r)); /c print sin (3.14) /c
f := cos; /c now assign cos to f /c
print (f(x)); /c print cos(3.14) /c
f := tan; /c now assign tan to f /c
print f((x)) /c three guesses /c

end

When an integer variable acquires a new value, as in i := 3, the bit
pattern for the integer 3 is put into location i . Obviously, assigning sin to f
is not going to cause a copy of the procedure’s machine code to be stuffed
into the variable f. The Algol 68 compiler writer must determine how to
implement this, but presumably he will assign pointers to the procedure’s
code and environment (or the equivalent) to f. Some examples of procedure
variable declarations follow:

begin
proc(real)real cotangent;
proc(int, int)int integer divide;
proc(int, int)bool coprime;
proc(char, char)bool char compare;
proc([,]real, [,]real)[,]real matrix add;
proc(string, string)string concatenate;
proc(int)void page eject;
proc(int)struct(string name, int age) find;
proc(int)proc(int)int pick function;
proc(proc(real)real, real, real)real simpson;
skip /c dummy statement /c

end

15

2.5 United Modes

As we discuss later on, actual parameters in procedure calls must be
of the mode expected, for example, a proc(int)real requires an int as a
parameter and will not accept a real. Sometimes it is convenient to have a
procedure with a formal parameter that can be any one of several modes.
For example, we might want to write a procedure that accepts a vector
parameter of mode []int, []real, or []compl and checks to see if any elements
are zero.

To permit this sort of flexibility, Algol 68 permits programmers to
create a special kind of mode called a united mode. A variable united from
int and real can be assigned either an int value or a real value. Similarly,
a variable united from []int, []real, and []compl can accept a vector of
integers, reals, or complex numbers as a value (but not a vector of Booleans).
United mode variables are declared as indicated here:

begin
union (int, real) ir;
union []int, []real, []compl) irc;
union (proc(int)real, proc(real)real) u;
skip /c dummy statement /c

end

It is possible at run time to determine the mode of the value currently
occupying a variable of united mode. This is done by using a variation on the
case statement (rr 3.4.1h) with clauses for the various possible modes. Each
clause is headed by a mode and (optionally) by an identifier, followed by a
colon. The clause corresponding to the current mode of the united variable
is executed. Unlike the normal case statement, the order of the clauses is

16

irrelevant.

begin
union (int, real, bool, char, bits, bytes, []int, []real) kitchen sink;
/c here are 4 valid assignments /c
kitchen sink := 3;
kitchen sink := 3.14;
kitchen sink := true;
kitchen sink := ˝a˝;
/c random is a standard proc real /c
if random < .5
then kitchen sink := 1
else kitchen sink := 2.78
fi;
/c now figure out whether random was < .5 /c
case kitchen sink in

(int i) : print ((˝integer˝, i)),
(real r): print ((˝real˝, r))

esac
end

In this example we determined the mode of the union by using the case
clause, and used the value in kitchen sink once its mode was known. Observe
the (int i) and (real r) in the case clause. To compute with the value in
kitchen sink in the int part (first clause) we can use the identifier i , now
known to be an int. The value of i is the value of kitchen sink . Likewise
the identifier r can be used in the second clause in any context where a
real number is allowed. If j had been declared as an integer variable in
the preceding program, j := kitchen sink would have been forbidden (by
the grammar) and would have been flagged by the compiler. The reason is
obvious: At the time of the assignment the compiler cannot guarantee that
kitchen sink contains an integer, and we would be in trouble if it contained
a []real. However, inside the first case clause it is guaranteed that kitchen
sink contains an integer. To make life easier for the compiler writer, the new
name i is introduced; there is no doubt about the mode of i . Although j:=
kitchen sink would be forbidden, even inside the first clause, the assignment
j:=i would be allowed (only) in the first clause.

You may be wondering how unions are implemented. Presumably the
compiler will have to reserve enough space in a united variable for the largest
of the alternatives (or if that is too painful, perhaps only a pointer will be
stored). Also, there must be some information stored that tells which mode

17

is the ”current” one. Note that there are no objects or values of united
modes, just variables.

2.6 Reference-to Modes
Most programming languages are somewhat lax about making a distinc-

tion between the address of a variable and the contents of that variable. The
nature of the difficulty can be most easily seen by means of an example from
Fortran:

SUBROUTINE SUM(I,J,K)
INTEGER I, J, K
I = J+K
RETURN
END

Now consider the result of the following call:

CALL SUM(1,2,3)

Although the subroutine declaration is grammatically correct, and the
call is also grammatically correct, something is obviously wrong.

The problem is not that the actual parameters are of the wrong type. 1
is declared an integer, and the number 1 is certainly an integer. The trouble
occurs because the lefthand side of an integer assignment must evaluate
to the address of a variable, not to an integer value. Few compilers will
even give a precise error message at run time, let alone at compile time.
Typically an address pointing into the run-time constant table is passed as a
parameter, and the value of the constant 1 is changed to 5 so that subsequent
N = 1+1 statements set n equal to 10 (decimal, not binary). In Algol 68

integer variables and integer values have different modes; so the error we are
considering will be detected at compile time as a parameter mismatch.

An integer variable in Algol 68 has mode ref int, (ref is a shortened
form of reference to); a real variable has mode ref real, etc. Consider the
Algol 68 program

begin int i; i := 3 end

In this program, i is an integer variable and has mode ref int. The constant
3, on the other hand, has mode int. A ref int corresponds to the address of a
memory location into which an integer can be put, whereas an int is a value,
not an address.

18

This distinction is very important and bears repeating. An integer
constant and an integer variable are different kinds of objects and have
different modes. The mode of the former is int and the mode of the latter
is ref int. The value of an integer variable is its memory address. Of course,
given an integer variable one can ask about both its value and the value of
the integer it eentains, but those are clearly different objects.

The Algol 68 rule for an integer assignment is that the left-hand side
must be, or be convertible to, an object of mode ref int, while the right-
hand side must be, or be convertible to, an object of mode int. Precisely
the same considerations hold for other modes, of course. Although procedure
definitions are discussed later, the Algol 68 version of SUM is presented here
for contrast with the Fortran version.

proc sum = (ref int i, int j, k) void: i:=j+k

Here i is clearly a different mode from j and k . Furthermore, the call
sum(1,2,3) is invalid because the modes of the actual parameters (int, int,
int) do not match the modes of the formal parameters (ref int, int, int). If
i had been specified as mode int instead of ref int, then the assignment i :=
j+k would have been detected as an error because the left-hand side of an
integer assignment must evaluate to something of mode ref int. Either way
the error would have been detected by the compiler, which is obviously better
than its subsequent appearance as an obscure program bug.

We have consistently said that the righthand side must be, or be
convertible to, to an object of mode int, rather than having said that the
right-hand side must be an object of mode int. This choice of words was
deliberate.

Consider the following program:

begin int i, j; i := 3; j := i end

In this program, i and j are both of mode ref int. In the first assignment
the right-hand side has mode int as it should, but in the second assignment
the right-hand side has mode ref int. Thus it would appear that j := i is
forbidden. Fortunately, there exists an automatic conversion between mode
ref int and int, which is called dereferencing. Conversions between data
types are familiar from other programming languages; for example, nearly
all programming languages allow an integer to be written in a position where
a real number is required, with automatic conversion implied.

In exactly the same way, Algol 68 often allows an object of mode ref m
to be written when an object of mode m (some arbitrary mode) is expected,

19

with automatic conversion implied. Such automatic mode conversions are
called coercions. There are six kinds, of which dereferencing is one. Integer
to real coercion, called widening, is another. Chapter 6 of the Revised Report
gives the exact rules about which coercions are allowed in what situations.

It should be pointed out that although widening from int to real is typ-
ically an actual operation performed on integers at run time, dereferencing
need not be performed at run time. If the computer has an instruction to
move the contents of location i to location j , the compiler writer is obviously
allowed to use it. No one is going to compel him to first put the address
of i in a register and then explicitly dereference it using indirect addressing
before storing the contents of i in j .

Dereferencing is more than simply a syntactic trick to allow variables
on the righthand side of assignments. Since ref int is a valid mode, the
curious reader may wonder if reference-to-integer variables exist. The answer
is yes. Just as an integer variable is a location in memory intended to hold
an integer, a reference-to-integer variable is a location in memory ntended to
hold an object of mode ref int, that is, the address of an integer variable.
In other words, a reference-to-integer variable can contain a pointer to an
integer variable. It cannot contain a pointer to a real variable or to any
other kind of variable, however. Likewise, a reference-to-complex variable
may contain only a pointer to a complex variable.

Consider the following program:

begin
ref int pt;
int i, j;
i := 0; j := 4;
if random < 0.5
then pt := i
else pt := j
fi

end

If pt is dereferenced once, it yields either the address of i or the address of
j . If it is dereferenced twice, it yields either 0 or 4. Barring some unusual
hardware, dereferencing a pointer twice is going to involve some run-time
action. Note that pt itself has mode ref ref int.

Finally we get back to the subject of mode construction. The rule for
creating pointer modes is simple. If m is some arbitrary mode, then ref m is
also a mode of pointers to m. Applied repeatedly we discover that, m, ref m,

20

ref ref m, ref ref ref m, etc., are all distinct modes. The program at the top
of page 167 shows how to declare some modes involving pointers:

begin
[]ref int a; /c a row of pointers /c
ref []real b; /c a pointer to a vector /c
ref []ref char c; /c a pointer to a pointer vector /c
struct (ref int p, ref real q) d; /c 2 pointers /c
proc ref bool e; /c proc yielding a pointer /c
ref proc bool f; /c pointer to a proc bool /c
union (ref int, ref bool) g; /c either of 2 pointers /c
skip /c dummy statement /c

end

Variables involving ref ”something” are typically used in list processing
applications. The distinction between the mode of a variable and the mode
of the objects that can be assigned to it is crucial, but often initially
confusing to people accustomed to other programming languages. Variables
have mode ref ”something,” and can contain objects of mode ”something.” In
addition, a variable is itself an object, with a mode and a value. The mode
of an integer variable is ref int, and its value is the address where the integer
is stored. Thus an integer variable can be regarded as an object of mode ref
int, and it can be assigned to a pointer variable whose mode is ref ref int.

In some programming languages (for example, PL/1), a pointer can
point to an object of any mode. This is a frequent source of errors. Often
a pointer somehow ends up pointing to a variable of the wrong mode, or
worse yet, points into the program itself or to unused memory. By strictly
categorizing pointers according to what they may point to, Algol 68 greatly
reduces the opportunities for making errors.

2.7 Mode Declarations
We have now seen how Algol 68 programmers can construct new

modes from primitive modes through the use of arrys, structures, procedures,
unions, and references. Algol 68 provides a mechanism for programmers to
give names to newly created modes, so they can be used in the same way
that built-in modes are used. New modes are declared by means of a mode
declarator (rr 4.2) as illustrated in the next column.

Mode declarations are used to create new data types. It is possible for
user-definer modes to be used to create still more complex modes, as in
family, which uses person. Algol 68 provides the ability for the programmer

21

to build up an entire library of mode definitions tailored to his particular
application.

begin int a, size; read ((n, size));
mode vector = [1:n]real;
mode matrix [1:n, 1:m]real;
mode rational = struct (int num, denom);
mode functionset = [1:n]proc(real)real;
mode book =struct (string title, author, publisher, int pages, year,

bool paperback);
mode magazine =struct (string title, publisher, int subscribers, publ

frequency);
mode library = [1:size]union(book, magazine);
mode person =struct (string initials, ref person ma, pa, int age, bool

too fat);
mode family =struct (person mommy, daddy, [1:2]person child);
mode bridgehand = [1:13]struct(char rank, suit);
mode word = [0:15]bool;
mode memory = [0:4095]word;
mode instruction1 = struct (int opcode, address1, address2, address3);
mode instruction2 = [1:4]int;
mode flight = struct (string plane, pilot, movie, bool nonstop,

[1:size]struct(string name, [1:10]char phone) passenger);
mode multireal = union (real, long real, long long real);
mode tree =struct (int value, ref tree right, left);
mode integer =int;
mode interger =int; /c for bad spellers /c
skip /c dummy statement /c

end

A few comments about mode declarations may be helpful. The modes
instruction1 and instruction2 each consist of four integers. If add is declared
to be instruction1 and sub is declared to be instruction2, then the fields of
add are accessed via the field selections:

opcode of add, address1 of add, address2 of add, address3 of add ,

whereas the components of sub are aceessed by subscripting:

sub [1], sub [2], sub [3], sub[4] .

Which choice is made depends upon the application.

22

The mode tree is interesting. It has three fields, an integer and two
pointers. In terms of allocating space for tree variables, it hardly matters
that the pointers point to objects of mode tree. Binary trees and graphs
are widely used in computer science, so modes like this are valuable. A
mode that is defined in terms of itself, like tree, is called a recursive
mode. Note that although the nonrecursive mode declarations are used
merely for convenience, the recursive modes really require the mode definition
facility (try declaring a variable with the same mode as tree just using a
struct(ref. . .)).

One must exercise some care when defining recursive modes. For exam-
ple:

mode bush = struct (int v, bush h, t)

is incorrect. Suppose that an int requires one word of memory, and a bush
requires k words of memory. Then a declaration like

bush blueberry

would require that the variable blueberry be allocated enough memory to
store one object of mode int (one word) and two objects of mode bush (2k
words) for a total of 2k+ 1 words. This contradicts our statement that a
bush requires only k words. The mode declaration is impossible. A bush
can hardly contain two bushes and then some. In contrast, the mode tree
presents no such problem since it only claims space for an int and two
addresses (pointers), not two objects of mode tree. As you might expect,
Algol 68 allows all the modes that are intuitively reasonable and prohibits
those that are not (rr 7.4).

Same modes can be ”spelled” in more than one way. For example, in

mode m1 = union (int, real);
mode m2 = union (real, int)

m1 and m2 represent the same mode. On the other hand,

mode m3 = struct(int i, real r);
mode m4 = struct(int j, real r);
mode m5 = struct(real r, int i);

are three different modes because the field selectors are part of the mode.
Mode equivalence is dealt with in rr 7.3.

23

At least one aspect of the orthogonal design of Algol 68 may now be
clearer. From the 11 primitive modes listed in Section 2.1 and the five simple
mode construction rules listed in Sections 2.2 through 2.6, one has the ability
to create a large and powerful collection of new data types.

In contrast, PL/1 is not orthogonally designed; there are no simple
rules telling which combinations of attributes are allowed and which are
not. A complete specification of the allowed ”modes” in PL/1 can only be
encoded by giving a large table of compatible and incompatible attributes.
This difference is characteristic of other aspects of Algol 68 and PL/1 as
well.

2.8 Using New Modes

Variables of user-created modes are defined in the same way that vari-
ables of the primitive modes are: first the mode, then a list of one or more
identifiers. Declarations are commands to the compiler to reserve storage for
variables. Keep in mind that the compiler needs to know how much storage
to reserve. When declaring an array variable, one must specify the actual
bounds (evaluated at run time) in order for the compiler to reserve enough
space. On the other hand, when declaring a pointer to an array (for example,
ref []int), the bounds are not needed, since the only storage reserved is that
required for the pointer, not the array; a pointer to a big array takes up the
same space as a pointer to a small array. However, to be used, the pointer
must appear on the left-hand side of an assignment, with some array (itself
declared with bounds) on the right-hand side.

The rules for when bounds are and are not needed are given in rr 4.6.
When a mode declaration contains a variable or an expression in an

array bound, for example, n in mode vector above, the question arises
whether the value of n at mode declaration time or at variable declaration
time is the one that is used. Consider this program:

begin
int n;
n := 3;
mode vector = [1:n]int;
n := 25;
vector x;
n := 75;
vector y;
skip /c dummy statement /c

end

24

It is the value of n at variable declaration time that matters; x has 25
elements and y has 75 elements. The value of n at mode declaration time
is irrelevant. In a certain sense, variable declarations are ”carried out” at
run time, providing more flexibility than most languages allow. (Of course, a
clever compiler writer will try to do as much as possible at compile time.)

Variables may be declared with initial values by following the identifier
with a ”becomes” symbol (:=) and the initial value. Structures and arrays
may also be initialized, with parenthesized lists of values. It is also possible
to partially initialize structures or arrays by using skip for some of the fields
or elements. The value of skip is undefined; these elements or fields must be
initialized by explicit assignment before being used.

Some sample variable declarations are shown below.

3. UNITS

begin /c mentally insert the mode declarations of section 2.7 here /c
int a := 3, size := 2;
char c := ˝q˝;
real length := 2.503;
vector v := (14.2, -9.1, 3.5678);
matrix a := ((1.0, 2.0, 3.0), (0.6, -0.9, 100.0), (1.1, 2.1, 3.4));
rational rat := (1, 2), tar := (3, 4);
functionset f := (sin, cos, tan);
book censored := (skip, skip, skip, skip, skip, false);
magazine cs := (˝computing surveys˝, ˝acm˝, 22000, 4);
library mini := (censored, cs);
person tom := (˝trj˝, skip, skip, 40, true);
person mary := (˝mej˝, skip, skip, 41, false);
family jones := (mary, tom, (skip, skip));
bridgehand south := (

(˝A˝, ˝S˝), (˝K˝, ˝S˝), (˝Q˝ ˝S˝), (˝J˝ ˝S˝),
(˝A˝, ˝H˝), (˝Q˝, ˝H˝), (˝9˝, ˝H˝), (˝7˝, ˝H˝),
(˝K˝, ˝D˝), (˝Q˝, ˝D˝), (˝T˝, ˝D˝),
(˝Q˝, ˝C˝), (˝J˝, ˝C˝));

word w; memory mem;
flight twa 156 := (˝747˝, ˝bill˝, ˝frankenstein˝, true, skip);
skip /c dummy statement /c

end

25

Like other programming languages, Algol 68 requires that expressions
be placed in certain contexts, for example, on the right-hand side of as-
signments, as actual parameters in procedure calls, and as subscripts. Ex-
pressions are called units in Algol 68 and are much more general than in
many other programming languages. In the following subsections we discuss
15 kinds of units. The complete list is given in rr 5.1A.

3.1 Denotations

The simplest form of a unit is a denotation (usually called a constant in
other programming languages). Typical denotations of mode int, real, bool,
char, and string are: 4, 3.6, true, ˝x˝, and ˝hi˝. ”Constants” of array
and structured modes are also allowed. They are called row displays and
structure displays, respectively, and consist of parenthesized lists of values.
For example,

[1:2, 1:3]int r2 := ((1, 2, 4), (8, 16, 32))

illustrates the use of a row display. Denotations are described in Chapter 8 of
the Revised Report.

3.2 Variables

The next simplest unit is the variable. In this statement,

begin int i, j; i := 3; j := i end

j , a variable, is used as a unit in the second assignment. (Remember that it
is dereferenced to an integer unit.)

3.3 Formulas

A formula (ita 5.4.2) is an operator and its operand or operands. A
monadic formula has one operand, for example, abs i , -x, and sign y. Dyadic
formulas have two operands, for example, i-j , x <y, and ˝abc˝ + ˝xyz˝.

Algol 68 has well over 100 ”built-in” operators (listed in rr 10.2)
and provides a mechanism that allows programmers to define new ones, just
as it provides a mechanism to define new modes. Operators are akin to
procedures. Each operator expects to have one or two operands of specific
modes, and delivers a result of a specific mode. The same symbol may
represent two different operators (cf. GENERIC in PL/1).

26

In the following program:

begin
int i := 1, j := 2, k;
real x:= 0.1, y := 0.3, z;
k := i+j;
z := x+y

end

the first + represents an operator with integer operands and an integer result,
whereas the second + represents a different operator with real operands and a
real result. Very likely they will require different hardware instructions.

A formula may be used as an operand. For example, the formula i+j
could be used as an operand of <, as in i+j < k , which is a formula yielding a
Boolean result (assuming + has higher precedence than <, which it has).

3.4 Slices
Arrays may be subscripted as in other languages. When an object of

mode []m is subscripted, an object of mode m is yielded. Algol 68 also
permits a generalization of subscripting called trimming, yielding some cross
section of the original array. If z has been declared by [1:10]int z, then z[1
:7], z[1 :10], and z[2:5] are examples of units (slices) and can be used in
assignments, actual parameters, etc. For example:

begin
[1 :10]int a, b;
[1:20]real x; [1:20, 1:20]real xx;
read((a, b, x, xx));
b[1:4] := a[1:4]; /c assigns 4 elements /c
b[3:9] := a[1:7]; /c assigns 7 elements /c
b[1:10] := a[1:10]; /c assigns a to b /c
b := a; /c same as above /c
xx[4, 1:20] := x; /c assign to row 4 of xx /c
xx[8:9, 7] := x[1:2] /c xx[8,7] := x[1]; xx[9,7] := x[2] /c

end

A trimmer, such as 1:4 in the first assignment does not affect the dimen-
sionality of the array, whereas a subscript (just one bound, with no colon)
reduces it by one, as in xx[4,1 :20].

All combinations of trimming and subscripting are valid. For example,
if s is a three-dimensional array, s[i,j,k], s[i,j,k1:k2], s[i,j1:j2,k1:k2], and

27

s[i1:i2,j1:j2,k1:k2] can be used as a variable, and one-, two-, and three-
dimensional arrays, respectively. Furthermore, s[i,j1:j2,k], s[i1:i2,j,k1:k2] and
other combinations are also allowed. In an assignment, the bounds must
”match,” as described in an 5.3.2. Subscripting and trimming are collectively
called slicing.

3.5 Selections

A selection consists of a field selector, the symbol of, and a structure
to be selected from. The field selector must be an identifier and cannot be
computed (because it is not an object). The structure being selected from
may, however, be the result of evaluating an expresston.

If a mode involves both structures and rows, a unit derived from an
object of that mode may involve slicing (subscripting or trimming) and
selecting. Slicing binds more tightly than selecting; so tail of dog [k] means
tail of (dog[k]) and not (tail of dog)[k]. If tail of dog yields an array, then
(tail of dog)[k] is the correct way to extract the kth element of that array.
When combining selecting and slicing, keep in mind that any array can be
sliced and that any structure can be selected from. Here are some examples:

begin int m := 25, n := 40, k := 2;
mode person = struct (string initials, int age);
mode course = struct (person prof, [1 :n]person student);
mode dept = [1:m]course;
person smith, jones, brown, davis;
course painting, drawing, etching;
dept art;
/c begin assigning values /c
initials of smith := ˝rbs˝;
age of smith :47;
jones := (˝tmj˝, 32);
prof of painting := (˝jed˝, 47);
prof of drawing := smith;
prof of etching := prof of painting;
art[1:3] := (painting, drawing, etching);
prof of art[2] := jones; /c smith quit /c
age of prof of art[2] := 39;
(student of art[2])[1] := davis;
age of (student of art[2])[1] := 18;
(student of art[k+1])[k-1] := (˝tns˝, 19)

end

28

This may look imposing at first, but it is really quite logical. The key is
to keep track of the mode of the objects. When faced with an array, like
(student of art[2]), one slices. When confronted with a structure, like prof of
art[2], one selects a field from it. If you still think Algol 68 is unnecessarily
complicated, try to rewrite the preceeding program in Fortran.

3.6 Procedure Calls

The mode of a procedure is uniquely determined by the modes of its
parameters and its result. If a procedure returns mode m, then a call
of that procedure is a unit of mode m and may be used anywhere a
unit of mode m is needed. If a procedure p1 has mode proc(real,bool)int,
then a[p1(3.14,true)] show a call of p1 used as a subscript. Similarly, if
a procedure p2 has mode proc(int)bool, then if p2(6) then print(k) fi is
legitimate.

A procedure call has two parts: the procedure to be called, and the
parameter list. The first part may be the result of a computation, for
example,

begin int i; real x, y;
[1:3]proc(real)real f := (sin, cos, tan);
to 100 /c repeat 100 times /c
do read ((i, x));

/c i selects sin, cos, or tan to call /c
y := f[i](x);
print (y)

od
end

A function with no parameters (that is, of mode proc int) is not
”called”. Instead the procedure name is written with no parameter list.
For technical reasons this is not regarded as a procedure call, but as a
type conversion (coercion) from mode proc m to mode m. It is called
deproceduring (rr 6.3) and is completely analogous to the widening coercion
from int to real in real x : 3 or the dereferencing coercion in (int i := 1,j; j
:= i). If deproceduring did not exist, then real x := random would have to
be prohibited, since random has mode proc real and on the right-hand side in
the preceding example a real is needed.

29

3.7 Assignments

An assignment (called an assignation in the Revised Report) consists of
a destination (the left-hand side), a ”becomes” symbol (:=), and a source (the
right-hand side). A ref m assignment has a ref m unit as the destination and
an m unit, or something coerceable to an m unit, as the source (rr 5.2.1.1).

Having detected a ref m destination, the compiler will coerce the source
by all possible means to m. We emphasize that after all coercion the destina-
tion is mode ref m and the source is mode m.

An assignment can stand by itself as a statement, or be used itself as a
unit. It may, for example, be used as a source in another assignment (but
not as a destination to avoid certain ambiguities). For example, j := k is an
assignment and as such may be used as the source in i := source, yielding i :=
j:= k . Because Algol 68 allows assignments as sources, it also gets multiple
assignments, as an extra added attraction, for free. Furthermore, a[i := i+ 1]
is a perfectly valid way of subscripting the array a: first the assignment is
carried out, and then the newly assigned value of i is used as a subscript.

3.8 Generators

Algol 68 provides two storage management strategies: local and heap.
Local storage consists of a last-in, first-out stack. Whenever a procedure is
called (and perhaps when a begin end block is entered, depending on the
implementation) a new stack frame is created for all local variables needed in
it. When it is exited, the storage is released by resetting the stack pointer to
the value it had prior to entry. This leads to a simple and efficient method
for allocating storage.

All variables declared in the usual way use the local storage discipline.
In addition, the programmer may explicitly request more stack storage to be
reserved by using a local generator, loc, followed by a specification of the
mode desired (the mode is needed because loc [1:n]compl may take much
more space than loc bool). The value of the generator loc m is the address of
the the object, that is, a pointer to it, and as such has mode ref m.

30

An example may make the use of local generators clearer.

begin /c calculate something /c
begin /c demonstrate triangular arrays /c

int n; read(n);
[1:n]ref[]real triangle;
for k from 1 to a
do triangle[k] := loc[1:k]real;

/c fill in some values /c
for j from 1 to k
do triangle[k][j] := k+j od

od
end

/c storage used by triangle is now released /c
end

Numerical analysts often deal with symmetric n × n matrices. Using a
representation of n columns of n elements each is wasteful of storage. The
preceding program declares triangle to be a row of pointers, each pointing to
a different real vector. The vectors pointed to are created during execeution
of the program, each newly created vector being one element larger than its
predecessor. When the preceding block is exited, all the storage reserved can
be released. That is why these generators are called local generators: the
effect is local to the block they occur in.

The array hamlet in the example at the end of Section 2.2 is allocated by
essentially the same mechanism as the array triangle just given. That is why
unlabeled statements can be allowed before declarations.

Incidently, the declaration of triangle should be carefully noted. Actual
bounds are needed in the first brackets, but not in the second because
triangle is a vector of pointers. The compiler has to know how large the
vector is in order to reserve space for it, but for the purposes of allocating
space to triangle, it does not matter what is being pointed to. In fact,
bounds are never needed in a mode following a ref.

The other storage management scheme is the heap. The heap is a single
homogeneous section of memory from which storage can be acquired by heap
generators, of the form heap m, where m is the specification of the mode
of the object needed. Because heap objects are not dependent on the stack
discipline, they do not vanish when the block in which they were created
is exited. When the heap is exhausted, a run-time garbage collector has to

31

come in and recycle the garbage. For example,

begin ref[]real ptr;
to 1 000 000 /c repeat a million times /c
do ptr := heap[1:1000]real od

end

is a lovely little test to see whether your garbage collector is working
properly. Passing through the loop the first time, a piece of the heap is
allocated for a 1000-element real array and the address of the array is
assigned to ptr. Passing through the loop the next time, the same thing
happens, overwriting the address of the first array, which now becomes
garbage because there is no way to access it. On some subsequent pass,
all the free space on the heap will be gone, and garbage collection will be
automatically invoked to recover unused storage.

Note that if a local instead of a heap generator had been used in the
preceding example, the stack frame would have kept growing and growing
until all of memory was full. Since stack storage is only released at procedure
(or possibly block) exit, the program eventually would have been aborted
with a ”stack overflow” message.

3.9 Nil
In list processing applications, it is necessary to have some marker to

indicate the end of a list. When programming in Assembly Language, zero is
often used. In Algol 68 a special symbol, nil (rr 5.2.4), is provided to end
lists.

3.10 Identity Relations
When performing list processing, it is sometimes necessary to compare

two pointers to see if they point to the same object. This can be done
using identity relations. Identity relations are also used to compare pointers
to nil. In practice, it is usually necessary that the programmer specify the
mode required using a cast (see next Section 3.11). For example, consider a
variable, ptr, declared by: ref person ptr, that is, ptr can point to an object
of mode person. To see if ptr points to nil, one uses the construction

ptr :=: ref person (nil).

The identity relators :=: and :=/ : are not operators (because they act on an
infinite number of modes), but they may be regarded roughly as operators of
infinitely low precedence. Thus, for example,

if i <j ∧ ptr :=:nil then

32

means

if(i <j ∧ ptr) :=: nil then

which is probably not what was intended. To illustrate heap generators,
nil, and identity relations, we give a simple program that reads in people’s
bowling scores and stores the information as a singly linked list. In phase
two, names are looked up and the scores are retrieved.

begin
mode person = struct(string name, int score, ref person next);
ref person first := nil, ptr;
string bowler; int bowled;
bool still looking;
make term (stand in, ˝ ˝);
while read(bowled, bowler)); bowled > 0
do first := heap person := (bowler, bowled, first)
od;
/c phase 2. look ap the scores /c
while read ((newline, bowler)); bowler =/ ˝˝
do ptr := first; still looking := true;

while (ptr :=/ : ref person (nil)) ∧ still looking
do if name of ptr = bowler

then print((bowler, score of ptr, newline));
still looking := false

else ptr := next of ptr
fi

od;
if still looking
then print((bowler, ˝not in our league˝, new line))
fi

od
end

Some comments may be helpful. The condition in a while statement
consists of zero or more statements followed by a unit. In the first while
statement in the preceding program, two variables are first read, and then
the condition (bowled > 0) is evaluated. The data are arranged in such a
way that there is one person per card, first a score, and then a name. It is
necessary to specify the string delimiter for the name, and this is done by the

33

call to the procedure make term, defining space as the string delimiter for the
standard input file, stand in (see Section 9, Input/Output).

Let us imagine that the first two people are named Adam and Eve,
with bowling scores of 105 and 107, respectively. For the execution of the
initial while loop, first points to nil. After the loop has been executed once,
an object of mode person has been created, with its three fields initialized
to (˝Adam˝, 105, nil). The variable first then points to this object. Passing
through the loop the next time, a second object of mode person is created,
with its fields initialized to (˝Eve˝, 107, pointer to first object). Now first
points to Eve, which points to Adam, which points to nil.

3.11 Casts

Most of the time it is not necessary to specify the mode of a source,
destination, operand, etc., explicitly. It is usually obvious from context.
However, to handle those situations that are inherently ambiguous, the
required mode may be specified explicitly using a construction called a cast
(rr 5.5.1), one form of which consists of a mode followed by a parenthesized
unit, as in ref int(i).

To understand why casts are needed, examine this program:

begin int i := 0, k := 1;
ref int ptr := i;
ptr := k;
print (i)

end

Consider what ptr := k does. On one hand, it looks like an innocuous
assignment of the address of k to a pointer variable (ptr has mode ref ref
int, and k has mode ref int).

But on the other hand, suppose both ptr and k were dereferenced,
yielding a ref int object as destination and an int object as source. If that
happened, i would be assigned the value 1, quite different from assigning k
to ptr. To avoid the occurrence of this ambiguity, the Algol 68 grammar
was constructed in such a way as to prevent dereferencing destinations. This
means that the preceding program prints 0, not 1.

Now comes the 64 dollar question: suppose you actually intended the
second interpretation; how can that be achieved? Answer: use a cast; that
is, replace the assignment by ref int (ptr) := k . The cast explicitly forces ptr
to be converted to mode ref int. Since k cannot be assigned to a ref int, k is
dereferenced. (Dereferencing is allowed for sources.)

34

When a cast is used, two modes are involved: the starting mode (the
mode of the object inside the parentheses), and the goal mode (the mode
listed before the open parenthesis). If there is no coercion path between
the starting and the goal modes, the cast is invalid. For example, if ptr
has mode ref proc ref int, then real(ptr) is a valid cast because ptr can be
dereferenced, deprocedured, dereferenced, again, and widened. However, bits
(3.14) is invalid because there is no coercion path from real to bits. Coercion
is discussed in more detail in Section 4, Coercions.

3.12 Choice Clauses
Algol 68 allows if ”statements” and case ”statements” to be used as

units if they produce the proper mode. This is illustrated by the following
program:

begin /c examples of choice clauses /c
int i, j, k;
real x := 0.1, y := 0.2, z := 3.1;
read ((i, j, k));
[1:10]bool a, b;
x := if i<0 then .3/x else z+4.0 fi;
for n from i to if j = 2 then 1 else k fi
do b[n] := true od;
b[case i in 6, 3 out 4 esac] := false;
if i = 0 then j else k fi :=

if j>0 then j+1 else k-1 fi;
[if i>0 then 1 else k-1 fi :10] int c;
z := if i>3 then sin else cos fi (3.14);

end

Three kinds of choice clauses exist: Boolean, integer, and united.
• The boolean choice clause is the familiar if . . . then . . . else . . .fi construc-
tion. If the else part is absent and the condition is false, the result is unde-
fined.
• The second choice clause has the form case . . . in clause1, clause2, clause3,
. . . , clause n out . . . esac. The integer expression between case and in selects
one of the clauses by indexing into the clause list. Thus the order of the
clauses is critical. If there is no out part, and the expression is out of range,
the result is undefined.
• The third choice clause takes a united variable (such as kitchen sink used
in Section 2.5) and selects one of the clauses based upon its current mode.
The order of the clauses for this type of choice clause is irrelevant.

35

Variables may be declared in the condition, or integer parts, initialized,
and then used in the succeeding parts; that is, their scope encompasses the
entire choice clause. For example:

begin /c print smaller of 2 numbers /c
if int i, j; read ((i, j)); i<j
then print (i)
else print (j)
fi

end

Algol 68 (and common sense) requires that all the possible choices in
a unit be of the same mode, or be coerceable to the same mode. The unit if
i<0 then 4 else j fi can be used anywhere an integer unit is expected, because
the then part is already an integer and the else part can be converted
to one by dereferencing it. The unit cannot be used as a destination,
however, because the then part cannot be converted to a ref int; there is
no ”referencing” coercion.

Now consider the assignment in:

begin int i, k; read (k);
i:= if k<0 then 6 else true fi

end

This assignment is incorrect because an integer unit is needed as the source,
and it is not possible to coerce all choices to mode int; namely, true cannot
be turned into an integer. The problem of making sure all choices can
be converted to the proper mode is called balancing (rr 3.2.1e). Since an
assignment may have long case units, both as source and destination, just
determining the proper mode of the assignment may itself be a substantial
task for the compiler. However, the grammar was constructed in such a way
as to insure that there is only one possibility.

Algol 68 allows if, then, else, and fi to be written as (, |, |, and),
respectively. Thus if k<0 then i else j fi can be written (k<0 | i | j). This is
often convenient in constructions like:

x := (i<0 |y |z) + (i<0 | 4.0 | z+2)

36

3.13 Closed Clauses
Algol 68 is an expression language. This means that every executable

statement or group of statements can (at least potentially) deliver a value.
A serial clause (rr 3.2) is a series of zero or more declarations and/or
”statements” followed by a unit. The mode and value of the serial clause
consist of the mode and value of the final unit. A closed clause is a serial
clause enclosed by begin end or by parentheses. A closed clause has the
mode and value of the serial clause, that is, of the last unit in the clause.

Some examples of closed clauses follow:

begin /c closed clauses /c
begin int i; read(i); i end;
begin real x; read(x); sin(x) end;
begin int i, j; read((i, j)); i+j end;
begin [1:10]int a;

for i from 1 to 10 do a[i] := i×i od; a
end;
(int i; i := 20);
(˝horse˝);
((10, 20, 30, 40));
((((((0))))));
(int i; (i := 3))

end

Since closed clauses are units, they may be used in the same way any
other units are used, even if this seems peculiar at first.

Closed clauses may be used as sources; subscripts; from, by, or to parts
in for statements; etc. For example, the following statement is perfectly
valid:

k := (int i; read(i); i+1)

3.14 Skip
There is a special unit, skip, which is explicitly undefined. It takes on

whatever mode is needed. As we have seen earlier, it can be used to omit
the initialization of an element or field of a row or structure display, or to
serve as a dummy statement. Do not confuse skip with nil; nil is a specific
value that can be tested for; skip is just ”filler” to make a construction
syntactically correct, vaguely analogous to CONTINUE statements in Fortran.

37

3.15 Routine Texts

Since Algol 68 allows procedure variables, it is only natural that it
also allow procedure units, so that there is something to assign to these
procedure variables. A routine text is a procedure body, headed by the
formal parameter list, if there is one. We discuss routine texts in the context
of procedures and operators later. As a preview, we give a few examples of
routine texts as sources:

begin proc(real)real f;
proc int p; proc void q;
f := (real r) real: 3.14/r;
f := (real s) real: s+4.0;
f := (real t) real: sin(cos(t));
p := int: 3;
p := int: (int k; read(k); k);
q := void: print (˝hello˝)

/c note: no procedures have been called /c
end

Note that the formal parameters can be used in the body of the routine text,
following the colon.

3.16 Other Units

For the sake of completeness, we note that loop clauses (for loops),
jumps (goto statements), formats, parallel clauses, and collateral clauses (for
example, row displays) are also units in the technical sense (rr 5.1A).

38

4. COERCIONS
Coercion is the Algol 68 term for automatic mode conversion. Unlike

some languages (notably PL/1) that allow practically anything to be con-
verted into practically anything else, Algol 68 has very few automatic con-
versions. Automatic conversions often lead to unexpected and unwanted re-
sults, so Algol 68 was specifically designed to keep them well in hand.

There are exactly six kinds of coercions, each converting some class of
modes into another. The six kinds of coercions are:

coercion input mode output mode
dereferencing ref m m
deproceduring proc m m
widening int real
widening real compl
widening bits []bool
widening bytes []char
rowing m []m, [,]m etc.
rowing char string
uniting m union (m,m1, . . .)
voiding m (no mode at all)

We have already discussed dereferencing (Section 2.6, Reference-to Modes),
widening (Section 2.6), and deproceduring (Section 3.6, Procedure Calls):
Widening also applies to the long and short forms of int, real, bits, and
bytes.

Rowing can convert a unit into a one element array where required by
the context, such as in [1:1]int a := 3. Uniting turns a unit into a union
where required by the syntax, as in union(int, real) u := 4. Rowing and
uniting happen when needed and are of little interest to the average garden
variety programmer.

As is probably apparent by now, constructions called statements (for
example, assignments, procedure calls) in most languages are called units in
Algol 68 and can be used as sources, parameters, etc. Sometimes, however,
the value of a unit is not needed. Consider what happens to the value of i:=j
in the closed clause:

(int i, j := 3; i := j; i+j)

it is discarded after the assignment is performed. Technically this is called
voiding (rr 6.7). Algol 68 ”statements” are properly called void units.
Chapter 6 of the Revised Report describes the coercions in full.

39

Note that there is no coercion from real to int. However, the monadic
operators round and entier operate on reals and deliver integers, rounding
and truncating, respectively.

5. CONTEXTS

Not every coercion is allowed in every context (for example, in source,
destination, subscript, actual parameter). In Section 3.11 Casts, we saw that
ambiguities could result if dereferencing of destinations was allowed. Each
context has an intrinsic strength. The strength specifies which coercions are
allowed. There are five strengths: strong, firm, meek, weak, and soft. In
some contexts no coercions at all are allowed.

Strong contexts are those in which the mode of the unit is uniquely
determined by the context. For example, in

(real x; x := big hairy mess)

the destination is known to be of mode ref real. Any and all coercions may
be used (repeatedly) to turn the source into an object of mode real. If the
source is an int, it can be widened; if it is a ref real, it can be dereferenced;
if it is a proc real, it can be deprocedured; if it is a ref proc ref int, it can
be dereferenced to proc ref int, deprocedured to ref int, dereferenced again
to int, and finally widened to real. Some examples of strong contexts are:
sources in assignments, initial values in declarations, actual parameters, and
procedure bodies.

In other contexts some coercions must be prohibited to avoid ambigui-
ties. For example, consider:

begin int i := 2, j;
real x := 3.0, y;
j := i+i;
y := x+x

end

The + in i+i is an operator that operates on integers and yields an integer.
The + in x+x is a different operator acting on reals. The two operators cor-
respond to different hardware instructions. The compiler tells which operator
is to be used by looking at the modes of the operands. If operands could be
widened, the operands of the first + could be dereferenced and then widened,
yielding reals. Then the compiler could not tell which operator was meant.
Operands are always in firm context.

40

If every kind of unit were allowed in every context, certain ambiguities
would arise, as can be easily seen by means of an example. Consider what
would happen to the integer assignment i := j+2 if j , which is an operand
of +, were replaced by the assignment k := 3. We would have i := k := 3+2,
which is perfectly legal, but not what was intended. It adds 3+2 and then
assigns the result, 5, to k and i . If we wrote the operand k := 3 as a closed
clause (k := 3), we would get i:= (k := 3)+2, which first assignsi 3 to k ,
and then 5 to i . This is quite a different result than in the first case! To
avoid ambiguities, Algol 68 only allows constructions in positions where no
confusion can arise.

6. PROCEDURES
In Algol 68 procedures are objects and have values, just as any

other objects. Procedure variables exist and may be declared, just as other
variables. They may also be initialized to some value of the appropriate
mode; for example, by using a routine text:

proc real p1 := real: 1.0/(1.0+random);
proc int p2 := int: (int k; read(k); k);
proc(int)int p3 := (int k)int:(k+1) over 2

Procedures (and all other modes) may also be declared in a slightly different
way, by use of what is technically called an identity declaration (rr 4.4.1 a).
This form consists of proc, the identifier, an equals sign, and a routine text.
In this form the identifier is no longer a variable and cannot be assigned a
new procedure. Some examples of this form are:

begin /c proc declarations /c
proc next = (int k) int: k+1;
proc bump = (ref int k) void: k := k+1;
proc less = (int j, k) bool: j<k;
proc readin = int: (int k; read(k); k);
proc eject = void: print(new page);
proc dot product = (int n, []real a, b) real:

begin real sum := 0;
for k from 1 to n do sum := sum+a[k]×b[k]
od;
sum

end;
skip /c dummy statement /c

end

41

Note that the procedure body (the part following the colon) is a unit. In the
dot product example, the unit is a closed clause.

6.1 Parameter Mechanism

A procedure may be declared with an arbitrary number of formal pa-
rameters, but calls to the procedure must supply precisely the proper num-
ber of actual parameters, no more and no less. The nth actual parameter is
accessed by using the identifier of the nth formal parameter, just as in For-

tran, PL/1, Algol 60, etc. Thus the order of the formal parameters is
very important.

Unlike these other languages, however, the modes of the parameters are
specified directly in the formal parameter list. The mode specified before the
identifier of each formal parameter is the mode of that parameter. In the
declaration:

proc recip = (real x) real: 1.0/x

the mode of x is real, It is not ref real. By way of contrast, in the variable
declaration real x, x is of mode ref real. This difference is crucial to the
understanding of the Algol 68 parameter mechanism.

The parameter passing works as follows. At compile time, the compiler
determines which coercion path is needed. The actual parameters are first
evaluated, and then coerced if run time coercion is required.† (An actual
parameter is a unit, and might be a closed clause 10 pages long.) Copies of
the values yielded are then passed to the procedure. This may be regarded as
a generalization of the call by value used in Algol 60, except that in Algol

68 a parameter may be of any mode, including ref ”something,” in which
case an address is passed.

To shed more light on the parameter mechanism, let us begin with a
syntactically incorrect program:

begin int n := 4; /c incorrect program /c
proc wrong = (int k) void: k := k+1;
wrong(n);
print(n)

end

† Uncorrected text of the previous 2 sentences: The actual parameters are
first coerced to the modes specified by the formal parameters (if necessary).
Then each actual parameter is evaluated.

42

The problem here is that k has mode int and not ref int. The destination of
an assignment must be of mode ref ”something;” the assignment k := k+1 will
be flagged by the compiler as incorrect. Now let as try again.

begin int n := 4; /c correct program /c
proc right = (ref int k)void: k := k+1;
right(n);
print (n)

end

This program will print 5. When a formal parameter is declared int rather
than ref int, the corresponding actual parameter is protected from being
changed. This often helps catch bugs.

To illuminate the more subtle aspects of the parameter mechanism,
consider these two programs:

begin int i := 0;
proc jekyll = (int a) void:

(i := i+1; print(a));
jekyll (i)

end

begin int i := 0;
proc hyde = (ref int a) void:

(i := i+1; print (a));
hyde (i)

end

The call jekyll(i) is executed in the following steps. Since the formal parame-
ter is of mode int, the actual parameter, i , is dereferenced to yield an integer.
A copy of this integer value is then passed to jekyll (on the stack, in a regis-
ter, or some other way). Then jekyll increments i . Finally, jekyll accesses the
actual parameter passed to it and prints it. The number 0 is printed.

The call hyde(i) is executed differently. The formal parameter in pro-
gram 2 is of mode ref int; so i is not dereferenced, because it is already in the
proper mode. A copy of the address of i is made and put on the stack, in a
register, or elsewhere. After incrementing i , hyde picks up the actual param-
eter, the address of i , dereferences it, getting 1, and then prints the number
1.

An object of mode int is passed to jekyll, but an object of mode
ref int is passed to hyde. In a sense, jekyll uses the Algol 60 call-
by-value parameter mechanism, whereas hyde uses something similar to a

43

call-by-reference mechanism. Algol 68 effectively gives the programmer
some control over how parameters are passed via the modes of the formal
parameters.

In summary, the parameter mechanism has three key features:
1) A formal parameter is written as a mode followed by an identifier. A

formal parameter written as int k really has mode int, not mode ref int.
2) An actual parameter may be any unit, and any coercion may be used on

it, but the result after coercion must match the mode of the formal pa-
rameter. If a formal parameter has mode ref real, the actual parameter
must yield a real variable; the value 3.14 will not suffice. The calling,
and not the called, procedure performs the coercions.

3) A copy is made of the actual parameter (after coercion). This copy is
what is passed (conceptually). All references to the formal parameter
use this copy. Thus the parameter is only evaluated once (as opposed to
the call-by-name mechanism used in Algol 60, where the parameter is
reevaluated on every access).

6.2 More About Procedures
Unlike PL/1, parameters and results in Algol 68 may have any mode;

pointers, arrays, structures, unions, and even procedures are all allowed.
As an example of using a procedure as a parameter, consider the following
procedure for computing the sum: f(1) +f(2) +f(3) + . . . +f(n).

proc sum = (int n, proc(real)real f)real:
begin real sum := 0;

for i to n do sum := sum+f(i) od;
sum

end

In this example, i is allowed as a parameter to a proc(real)real because
parameters are strong units and therefore can be widened. A typical call
to sum might be sum(100,cos), which would yield cos(1) + cos(2) + . . . +
cos(100).

In Algol 68 a routine text is a unit and as such can be used as an
actual parameter. In the previous examples, routine texts were used to the
right of the equals sign. Some examples of routine texts as actual parameters
of sum are:

sum(100, (real x) real: 1/x)
sum(50, (real x) real: sin(x))
sum(k+1, (real x) real: random)

44

Algol 60 fanciers will notice that using a routine text as an actual
parameter is essentially equivalent to Jensen’s device [5], but a lot less
sneaky.

It is sometimes useful to be able to write procedures that accept a vari-
able number of parameters. Although strictly speaking this is not possible
in Algol 68, something very close is possible. A procedure with one formal
parameter, an array, must have one actual parameter, also an array. How-
ever, this array may have an arbitrary number of elements, provided it is of
the proper mode. Remember that a one-dimensional integer array has mode [
]int no matter how large it is; the bounds are not part of the mode.

When it is expected that a procedure be called with different sized
arrays as parameters, there must be some way of determining the bounds
of its actual parameters. Two operators are provided for this purpose: lwb
and upb. If vec is a one-dimensional array of any mode, lwb vec and upb vec
have the values of the lower and upper bounds, respectively. For a higher
dimensional array, n lwb q and n upb q return the lower and upper bounds of
the nth subscript, respectively. The lower bound of a row display is 1.

The following program declares a procedure, outp, that accepts an
integer array as parameter and prints each of its elements on a new line.
Note that calls to outp (and also to read) have two sets of parentheses. One
set is needed to enclose the parameter list and one set is needed to construct
the row display;

begin int i, j, k;
proc outp = ([]int a) void:

begin for i to upb a
do print ((new line, a[i])) od

end;
read ((i, j, k));
outp ((1, 2, 3, 4));
outp ((i, j, 7, k, j+1, k-4));
outp ((if i<j then 1 else k fi,

if j>0 then 4 else 2 fi,
10, k+6, j, -k, -6, +7, 0))

end

that is, (1,2,3,4) is a unit, but 1,2,3,4 is nothing. This is why print((x,y)) and
not print(x,y) has been used to print two variables.

It is possible to write procedures that accept any one of a prespecified
list of modes as a parameter by making the formal parameter a union. The

45

following example is a program that accepts parameters of mode int, real, or
bool and returns the mode as a string:

begin int k := 0; , union(real, bool) u := 4.0;
proc mohd = (union(int, real, bool)a) string:

case a in
(int): ˝int˝,
(real): ˝real˝,
(bool): ˝bool˝’

esac;
print((mohd(k), ˝ ˝, mohd(u)))

end

The output of this program consists of int real.

7. OPERATORS

The following program defines a new mode, vector, and a procedure,
vecadd, to add two vectors:

begin int n; read(n);
mode vector = [1:n]real;
vector v1 , v2, v3, v4, v5;
proc vecadd = (vector x, y) vector:

begin vector sum;
for j to upb x
do sum[i] := x[i] + y[i] od;
sum

end;
/c read in 4 vectors /c
read ((v1, v2, v3, v4));
v5 := vecadd(vecadd(vecadd(v1, v2), v3), v4);
print (v5)

end

The statement v5 := vecadd(vecadd(vecadd (v1,v2),v3),v4), although ghastly
to look at, is quite correct. Because vecadd(v1,v2) is a call, and hence a unit,
it may be used as an actual parameter to another call of vecadd.

The difficulty with the preceding expression is that although it is per-
fectly acceptable to the Algol 68 compiler, for many applications, infix
operators (that is, operators placed between the operands) are much more

46

natural than nested procedure calls. Algol 68 solves this problem by allow-
ing programmers to define new infix operators, just as they can define new
modes.

Operators are defined very much as procedures are. First comes op,
followed by the operator symbol (which may also be a boldface word), then
an equals sign, and a routine text. An operator must have either one or two
parameters, no more and no fewer. Like those of a procedure, the parameters
and the result of an operator may be of any mode. Let us try the vector
addition program again, using an operator this time.

begin int n; read(n);
mode vector = [1:n]real;
vector v1, v2, v3, v4, v5;
op + = (vector x, y) vector:

begin vector sum;
for i to upb x
do sum[i] := x[i] + y[i] od;
sum

end;
/c read in 4 vectors /c
read ((v1 , v2, v3, v4));
v5 := v1 + v2 + v3 + v4;
print (v5)

end

Just to prove that any mode can be used as an operand or as a result of
an operator, we present an operator that takes an int and a proc void as
operands, does something useful, and delivers nothing.

begin
op × = (int n, proc void p) void:

to a do p od; /c deprocedure p n times /c
proc eject = void: print (new page);
proc skip = void: print (new line);
2 × eject; /c skip 2 pages /c
3 × skip /c skip 3 lines /c

end

47

7.1 Operator Identification
Operators have one complication which procedures lack: the same sym-

bol can be used to represent different routine texts. This property is called
GENERIC in PL/1. The + in 1 + 2 is a completely different + than the + in
8.711+8.72. When the Algol 68 compiler sees an operator symbol, it de-
termines which operator definition to use by looking at the modes of the
operands. If they have modes m1 and m2, it looks to see if an operator with
that symbol and those modes has been defined. If so, it uses it. If not, it
begins coercing the operands to see if they can be converted into some other
modes for which an operator exists.

The process of determining which operator a symbol corresponds to is
called operator identification (rr 7.2). It is one of the great achievements of
the Algol 68 Revised Report that this entire process has been described
completely in the grammar; that is, the nonterminal <program> simply does
not generate any ambiguous programs. No English text is needed to describe
what is and what is not permitted.

After an operator has been identified, the evaluation of its formula is the
same as that for procedure calls, including the parameter mechanism. Even
Jensen’s device will work if you provide a routine text as an operand.

To illustrate how operator identification works, consider the following
program:

begin
prio ? = 1;
op ? = (int i, j) real: i+j;
op ? = (int i, real x) real: i-x;
op ? = (real x, int i) real: i+x+19;
op ? = (real x, y) real: (x<y|x|y);
print ((2?9, 6?2.0, 3.14?8, 9.2?9.9))

end

This program yields: 11.0, 4.0, 30.14, 9.2. Each of the four occurrences of ?
in the print procedure invokes a different routine text.

Not only can one define new operators on existing modes (for example,
”?” on ints) and existing operators on new modes (for example, + on vectors)
and new operators on new modes (for example, invert on matrix), but one
can even redefine the existing operators on the existing modes. If you really
want to redefine + on integers to mean subtract, that is your business; the
compiler will not complain.

More realistically, someone writing a simulator for a two’s complement
computer on a one’s complement computer (for example, a PDP-11 simulator

48

running on a CDC Cyber) might be very concerned about the specific bit
patterns used to represent integers, rather than just their numerical values.
In particular, he might want to redefine integer arithmetic to prevent -0 from
ever occurring.

Or a numerical analyst might want to redefine real arithmetic to handle
rounding differently, or to print a warning message when too much signifi-
cance has been lost.

7.2 Operator Priorities
When someone writes print(6+3×5) he expects to get 21, because mul-

tiplication has higher precedence (priority) than addition. In Algol 68 the
priority of an operator symbol can be set by the programmer. For example,

begin
prio + = 3, × = 2;
print (6+3×5)

end

will print 45, that is, (6+3) × 5. Monadic operators all have priority 10 and
cannot be changed. Dyadic operators may have priorities 1 to 9. This means
that -1 ↑ 2 is +1, not -1 because it is equivalent to (−1)2.

8. STANDARD PRELUDE
Section 10.2 of the Revised Report consists of several hundred definitions

of modes, operators, procedures, and values. Collectively they are called
the standard prelude. Every Algol 68 program is presumed to be declared
within the scope of these declarations. The modes, operators, etc., declared
in the standard prelude may be used in any Algol 68 program. In fact,
that is precisely why they are there. The standard prelude is written (almost
entirely) in Algol 68.

It can now be pointed out that the basic nucleus of Algol 68 (the part
defined by the grammar) is really much smaller than one might expect. For
example, some of the ”primitive” modes are not really primitive at all, but
are defined in the standard prelude; for example,

mode compl = struct(real re, im)

appears in rr 10.2.2f. Furthermore, none of the operators, trigonometric
functions, or input/output procedures are part of the language proper. An
implementor who was not concerned at all about compilation or execution
efficiency, either in time or in space, could have nearly the whole standard
prelude textually substituted in front of every Algol 68 program, saving
himself a great deal of work.

49

8.1 Environment Enquiries
The standard prelude begins with the environment enquiries (rr 10.2.1).

These enquiries allow a program to learn properties of the implementation it
is running under without having to deduce them by experiment. The largest
integer is called max int, the largest real is called max real, the smallest
positive real is called small real, the number of bits in an object of mode
bits is called bits width, etc. For example, here is a program to determine the
largest integer in an implementation: (print(max int)).

Since each implementor has the freedom to decide how many long and
short integers he wants to provide, environment enquiries are provided to
allow the program to find out how many there are. These include int lengths,
real lengths, bits lengths, and bytes lengths among others. The purpose of
these and the other environment enquiries is to ease the task of exchanging
programs between computers. For example, a program needing integers of at
least 47 bits could first check the value of max int; finding it less than 247−1,
it could use long ints instead of ints.

8.2 Standard Prelude Operators
10.2.2 of the Revised Report lists the standard modes. Section 10.2.3.0a

of the Revised Report lists the priorities of all the standard operators,
followed by the definitions of the standard operators. For example, the
operators on Boolean operands are as follows:

op ∨ = (bool a, b) bool: (a|true|b);
op ∧ = (bool a, b) bool: (a|b|false);
op ¬ = (bool a) bool: (a|false|true);
op = = (bool a, b) bool: (c∧b)∨(¬a∧¬b);
op =/ = (bool a, b) bool: ¬ (a=b);
op abs = (bool a) int: (a|1|0)

From the standard prelude one can see precisely which operators are defined
on which operands, and what they do. For example, to determine if abs true
has a value of 0 or 1, a glance at the standard prelude will show that it has
a value of 1. Few languages offer such precise definitions of their operators as
Algol 68.

Subsequent sections of the standard prelude define the operators for
comparison, arithmetic, string handling, etc. If one wants to see exactly
what + on strings (concatenation) means, one can consult rr 10.2.3.10i.
A very small number of operators are defined in English, such as - on
reals. To provide a full definition one would have in fact had to define how

50

floating point arithmetic works. This would have wreaked havoc with imple-
mentations on computers whose floating point hardware worked differently.
The implementor would either have had to ignore the standard prelude, or
simulate floating point operations in software.

Algol 68 allows mixed mode arithmetic. The formula 3.14+6 yields the
real 9.14. The mechanism by which this happens can now be safely revealed:
The operator + is defined for parameters of modes (int, int), (int, real), (real,
int), and (real, real). Four definitions are necessary because operands are
firm and because widening is forbidden in firm positions (to avoid ambiguities
in operator identification).

An interesting new idea in operators is that of combining arithmetic and
assignment. For example, rr 10.2.3.11d states:

op +:= = (ref int a, int b) ref int: a := a+b

This enables one to write: n + := 1 rather than n := n+1. The ”plus and
becomes” operator, +:=, may also ease the task of optimizing the object
code, especially on computers which can add directly to memory. Similar
operators exist for real numbers and the other operations; for example, -:=
means ”subtract and becomes.”

A number of standard mathematical functions are provided in rr

10.2.3.12 including sqrt, exp, ln, cos, arccos, sin, arcsin, tan, and arctan.
Anyone who prefers sines as operators rather than as procedure calls need
only write:

op sin = (real x) real: sin(x).

If you don’t care what values your functions return, you may enjoy
random (rr 10.5.1b). And finally, pi is defined as a real value close to you-
know-what (rr 10.2.3.12a). Standard prelude declarations may be overridden
simply by supplying other declarations.

9. INPUT/OUTPUT
Algol 60 was widely criticized for not discussing such mundane matters

as input/output. That is one problem from which Algol 68 will not suffer.
An extremely powerful and flexible set of input/output procedures is defined
in the standard prelude. A variety of input/output styles is provided, ranging
from the lowly print procedure to formatted input/output on files with user
control over conversion codes, error handling, and the like. The Algol 68

term for input/output is transput.

51

9.1 Books, Channels and Files

A book is a collection of information in the form of a three-dimensional
character array (rr 10.3.1.1a).† Books are comparable to what some other
languages call data sets. A book consists of a certain number of pages, each
page consisting of a certain number of lines, each line consisting of a certain
number of characters.

For example, line printer output may consist of many pages of 60 lines,
each line having 132 characters. Each position in the output can be described
by a triple (page, line, char). Likewise, a multifile magnetic tape can be
modeled with page = file number, line = record number, and character
position within a record. A book on a card reader might have only 1 page
with many 80-character lines. Books may not be read or written by being
subscripted; instead special procedures are provided for reading and writing.
We have already seen two of these: read and print.

A channel (rr 10.3.1.2) corresponds to an input/output device type,
for example, a disk, card reader, plotter, holographic store, or on-line
experimental rat. A file (rr 10.3.1.3) provides the machinery to use a
particular channel.

An object of mode file is actually a structure specifying a book, a
channel, the current position on the file (page, line, char), the conversion
code to use, and a number of procedures of mode proc(ref file) bool, as
well as a few other details. A typical procedure is: page mended. When
the program has filled up a page, page mended is automatically called.
Programmers may supply their own versions of page mended: for example,
eject to a new page, print a heading, and return true, indicating that the
difficulty has been corrected. A new version of page mended, p, can only be
associated with a file f by the call

on page end(f, p)

and not by directly referencing the field selector page mended. The other
procedures handle end of file, end of line, end of format, and invalid data
detected.

To access an existing book via a particular channel, declare a file and
call the procedure open to associate the book and channel with it. Open
has three parameters: the file, an identification string, and the channel.
The identification string and channel are installation dependent. To close

† Addendum: The mode of a book is ref flex[]flex[]flex[]char, not [,,]char,
as could have been inferred.

52

a file, call close with the file as parameter. To create a new book, call
create, specifying the file and channel. Three files are declared and opened
in the standard prelude (rr 10.5.1c): stand in, stand out, and stand back .
These files correspond to the normal input and output files, and the binary
scratch files. At some installations the files may be card reader, printer, and
magnetic tape; at others they may be an on-line terminal, an on-line terminal
and a disk. These files need (must) not be declared by the programmer.

Here is a simple program to copy 1000 lines from file1 to file2:

begin file in, out;
string s;
open(in, ˝file1˝, stand in channel);
open(out, ˝file2˝, stand out channel);
for i from 1 to 1000
do get (in, (s, new line));

put (out, (s, new line))
od;
close (in);
close (out)

end

The procedure open defines a correspondence between an Algol 68 file
name and a preexisting operating system file name. The procedures get and
put are the analogs of read and print. In fact, read(x) is declared (rr 10.5.1e)
as get (stand in,x) and print is declared (rr 10.5.1d) as put(stand out,x). The
inclusion of new line in the calls to get and put is needed to advance the
current position to the start of the next line.

Algol 68 supports random access books as well as sequential books.
Each installation must decide which channels are random access, and which
are not. Typically, disks and drums will be random access, whereas card
readers and paper tape punches will not be. If a book is randomly accessible
via a file f, the procedure call set possible(f) will yield true, if not, it will
yield false. To set the current position of file f to (p,l,c) call set(f,p,l,c).

A list of some (but not all) of the file handling procedures declared
in the standard prelude follows; f represents a file; p represents a proc(ref
file)bool; c represents a character, and x represents a variable, a constant, or

53

a row display.

get possible (f) true if f is readable
put possible (f) true if f is writeable
bin possible (f) true if binary transput ok
set possible (f) true if f is random access
reset possible (f) true if f is rewindable
chein (f) yields f’s channel
page number (f) yields the current page
line number (f) yields the current line
char number (f) yields the current char
lock (f) protects f from further access
scratch (f) detach and burn the book
get (f,x) read x from file f
put (f,x) write x to file f
new page (f) advance to a new page
new line (f) advance to a new line
space (f) advance one character
backspace (f) go back one character
set (f,pg,l,c) current pos := (pg,l,c)
reset (f) rewind to (1,1,1)
on logical file end(f,p) make p the procedure
on page end (f,p) to be called when the
on line end (f,p) corresponding event
on format end (f,p) occurs on file f
make term (f,˝c˝) make c string terminator on f

It is also possible to perform transput directly to a three-dimensional charac-
ter array in memory rather than to an external book (cf. ENCODE/DECODE in
CDC 6000 Fortran). To make an array buffer the pseudobook of file f, call
associate(f,buffer).

9.2 Formatless Transput
The simplest form of transput is formatless transput, of which read,

print, get, and put are the most important examples. Since get works
precisely like read, except on arbitrary files instead of on stand in, and put
is analogous to print, we concentrate on read and print.

Read and print have modes that ordinary programmers cannot construct.
Roughly speaking, the mode of print is proc([]union(int, real, bool, char, [
]int, [,,]int, and everything else that can be printed, and proc(file)void))void.
Read has a similar mode.

54

The procedure get is given in its entirety in rr 10.3.3.2a. For the
beginner, the following rules will be enough to get started. The input book is
regarded as a continuous stream of values separated by delimiters.

Integers, reals, and complex numbers may be signed. Reals and complex
numbers may contain a decimal point and an exponent part, indicated by
the letter ”e”. When a character variable is to be read, the next character
is taken (even blank), except at the end of a line or page, when the line or
page will be advanced first. Strings are delimited by end of line or by any
character from a special termination string associated with the file.

When reading vectors and matrices, the order in which the elements are
read is important. The question of how an array (or structure) is turned into
a linear sequence of elements is called straightening (rr 10.3.2.3). In short,
vectors are read from lowest element to highest element. Matrices are read in
row order, beginning with the first row, then the second row, etc.

The procedures new line, new page, space, and backspace may be passed
as parameters to read. The first three advance the current position before
reading. The last one moves it backwards before reading, but not beyond the
beginning of the current line. Using backspace, input data can be reread.

Print works as follows. For each mode of data there is a standard
format that is used. The widths of the fields are implementation dependent,
depending on max int and max real. Print refrains from splitting numbers
across lines or pages; if the number will not fit, the line or page is advanced
before printing. The procedures new line, new page, space, and backspace may
be included as parameters to print, and both read and print expect a single
parameter. If this is a row display, an extra set of parentheses is required, for
example,

print((new page, ˝title˝, new line, x, y, z))

For people who are slightly discriminating about what their output
looks like, but who are nevertheless too lazy to use formatted output, the
procedures whole, fixed, and float may be helpful (rr 10.3.2.1). The calls

print(whole(i, size)); /c e.g. +3 /c
print(fixed(x, size, d)); /c e.g. 6.02 /c
print(float(x, size, d, e); /c e.g. 1.214e-07 /c

output the integer i or real x in a field of width abs size. If size is positive,
an explicit sign is printed; if size is negative, plus signs are suppressed. The
integer d specifies the number of places to the right of the decimal point. The
integer e specifies the number of digits in the exponent field.

55

9.3 Formatted Transput

The standard prelude declares four procedures for formatted transput:
readf, printf, getf, and putf. Inasmuch as readf and printf are merely calls to
getf and putf with stand in and stand out, respectively, used as files, it is not
necessary to examine all four of them. For simplicity we discuss only readf
and printf. Note that readf, printf, getf, and putf are the formatted analogs of
read, print, get, and put.

There is a mode format whose values describe how values are to be layed
out on the output or are expected to appear on the input. A simple format
text (that is, ”denotation”) and its meaning on output is

$ p˝m = ˝5d, ˝n = ˝5d $

This first advances to a new page, then prints the string m =, then the value
of a variable as five digits, then the string n =, and finally another value as
five more digits. We discuss the construction of format texts in a subsequent
paragraph. For now, it is sufficient to say that format is a mode (declared
in the standard prelude in rr 10.3.4.1.1a) and may be manipulated like
any other mode; that is, []format, proc(int)format, and ref format are all
perfectly valid modes. Variables of mode format exist and may be assigned
values, namely, format texts.

Associated with each file is a format that applies to that file. The format
may be changed whenever a new one is needed, but a format remains in
effect until explicitly changed. The four formatted input/output procedures
each process their parameters sequentially. If a parameter is a unit, it
is transmitted according to the format currently associated with the file.
However, if the parameter is a format, it supersedes the current format and is
used for transmitting units until it itself is explicitly superseded. Note that a
format can remain associated with a file over a time spanning many input/
output calls. (Contrast this with Fortran, PL/1, and other languages
which require exactly one explicit format on each input/ output call.)

The procedure printf expects a single parameter, roughly []union(all
transputtable modes, format). Here are some examples of calls to the for-

56

matted transput procedures:

begin real x, y, z;
file f; open (f, ˝a˝, disk 1);
readf($l 5d, 7d $); /c new format for stand in /c
printf($l 10x 6d $); /c new format for stand out /c
putf(f, $ p ˝heading˝, 9d $); /c new format for f /c
printf((x, y, z)); /c use existing format /c
printf(($l 9d $, x, y, z)); /c use this format /c
close (f)

end

A format text can be used directly in a call to one of the formatted
transput procedures, as a source in an assignment to a format variable, as the
result of a procedure yielding format, etc. Format texts are delimited by $ as
we have seen. Between the dollar signs are a series of pictures, separated by
commas. Each value input or output is controled by some picture, although
a picture need not input or output a value; for example, it may merely eject
to a new page. Pictures may be replicated as in 2(5d 4x, 7d 2x), which means
5d 4x, 7d 2x, 5d 4x, 7d 2x. Replicators need not be constants; the letter ”n”
followed by a closed clause is also acceptable (among other possibilities).

Pictures can be subdivided into literal strings, alignments, and patterns.
Literal strings, such as ˝x =˝ or ˝page heading˝ are output as is, or are
expected to be exactly so on input. Literal strings may be repeated by
putting an integer in front; for example, 7”x” is the same as ”xxxxxxx”.

Alignments describe changes in the current position of the book, such as
”go to the next line before reading or printing.” There are six alignments (rr

10.3.4.1.1f):

code meaning
p advance to new page
l advance to new line
x advance one character
y backspace one character
q output/expect one blank
k move to specific character position

The alignments may also be replicated; for example, p 2l 5q on output means
go to the next page, skip 2 lines and 5 spaces. The difference between x and
q is this: on input x just skips, whereas q expects blanks; on output after
backspace, x skips and q overwrites with blanks. The alignments p,l,x,y, and

57

k cause the procedures new page, new line, space, backspace, and set char
number to be called, respectively.

Patterns are used for converting values, for example, integers, reals,
Booleans, or strings. They are described in detail in rr 10.3.4. The following
is a rough summary of some patterns. Each pattern consists of one or
more frames. A frame allows a certain class of character, for example, sign,
digit, exponent symbol, or any character. A list of frames and the allowed
characters in each follows:

code meaning
- blank or minus sign
+ plus or minus sign
z blank or digit
d digit
e letter e (exponent)
. decimal point
b Boolean (namely, 0 or 1)
i letter i (for complex numbers)
a any character

Rather than attempting to give the precise rules for combining frames into
patterns, we give some examples of how the integer 12345 would appear
with various patterns. (The letter B is used to indicate a blank space in the
output.) Note that z suppresses leading zeros.

pattern result of printing 12345
8d 00012345
6d 012345
7zd BBB12345
+7zd +BBB12345
-7zd BBBB12345
7z+d BBB+12345
7z-d BBBB12345

The following examples show how the real number 123.45 would appear with
various patterns:

pattern result of printing 123.45
5d.2d 00123.45
4d.3d 0123.450
3zd.2d 11123.45
3z+d.2d 11+123.45
+d.4dezd +1.2345eB2
-d.4dezd B1.2345eB2

58

To understand how patterns work, first remove the replicators by writing
out the pattern in full. For example, +4zd.2d means +zzzzd.dd. This pattern
contains nine frames: one plus, four z’s, one d, one point, and two more
d’s. A number output using this pattern will therefore occupy nine positions,
The leftmost position will be a + or - sign. The next four positions will
be digits, except that leading zeros will be converted to blanks. The four
positions following this will be: one digit (even zero), one point, and two
more digits (even 00). For example, 123.45 will be output as +BB123.45.

To allow leading signs to ”float rightword” to the immediate left of the
first nonzero digit, two special combinations are provided: Nz+d and Nz-d
(N is some integer). This does not cause ambiguities, because putting the
sign in the middie of the digits is clearly something special. The field width
for Nz+d or Nz-d is N+2; for example, 6z+d means zzzzzz+d and gives an
eight-position field.

A picture may consist solely of a literal string, an alignment, or a
pattern, or a sequence of these. Thus $p l 8d$ is a format text with one
picture, and $p,l,8d$ is an equivalent format text with three pictures.

As a final example of outputting numbers, consider this program:

begin int i := 2;
print (($ p ˝hi˝ 2l, 3d, 2z+d, 3q5zd.d,

z-d.2d $, j, -i, i+999, pi))
end

The output begins with ”hi” on top of a new page, then a blank line, then

002BB-2BBBBB1001.0BB3.14

Characters and strings are read and written using ”a” frames. Booleans
are transput using ”b” frames, with implementation defined characters flip
and flop (as in, T and F), corresponding to true and false, respectively. Val-
ues of modes bits can be handled in binary, quaternary, octal, or hexadeci-
mal, using 2r, 4r, 8r, or 16r, respectively, as illustrated in the following pro-

59

gram:

begin bits n;
/c print the first 100 integers in decimal, binary, octal; and hexadeci-

mal, each in an 8 position field with 2 spaces between fields. /c
for j to 100
do /c assign bit pattern of j to n (because only objects of mode bits can

be output in nondecimal radices) /c
n := bin i;
printf(($l 7zd, 2q2r7zd, 2q8r7zd, 2q16r7zd $, i, n, n, n))

od
end

Pictures may be replicated (as in 7l or 3d), and replicators may be proc
ints. Furthermore, there is a facility that changes dynamically among several
formats during transput, and a number of other sophisticated techniques.

The procedures readbin, writebin, getbin, and putbin are the analogs
of readf, writef, getf, and putf for binary transput (cf. PL/1 record
input/output).

10. SERIAL COLLATERAL, AND PARALLEL PROCESSING

In general, Algol 68 statements are executed one after another, in
the order written. The semicolon can be regarded as a go-on operator that
causes execution to continue.

The void units in a serial clause are executed sequentially, for example.
In some situations, however, there is no inherent sequencing. For example,
there is no reason for the first unit of a row display to be evaluated
before the last one. Nor is there any reason for the left operand of a
dyadic operator to be evaluated before the right operand. In some other
programming languages operands are evaluated strictly from left to right,
but nothing in classical mathematics suggests any precedent for this. Actions
that have no specific ordering in time are said to be carried out collaterally.

In formulating Algol 68, the designers intentionally specified that the
order of evaluating certain things, such as the left and right operands of a
dyadic operator, be undefined. This was done to help compilers produce an
optimized object code and to take advantage of multiprocessor systems.

By not fixing the order of evaluation of operands and certain other
constructions, Algol 68 provides the compiler writer with the freedom to
do the evaluations in the most efficient order. In some situations, evaluating
the right operand before the left operand may be more efficient. For example,

60

consider:

begin real x, y, z;
proc f = (real x)real: (random < .5 | x | -x);
read(x);
y := (pi+x)/8;
z :=f(x)+f(y);
print (z)

end

On a computer with a single accumulator used for arithmetic, after evaluat-
ing (pi+x)/8, y is very likely to be in the accumulator. It is also likely that
better object code can be generated if f(y) is evaluated before f(x), because
y is already in the accumulator, and x is not. If the Algol 68 specifications
had required that left operands be evaluated before right operands, the com-
piler would have no choice but to do the call of f(x) first, even though it is
less efficient in that order.

The second reason for having the order of evaluation of certain construc-
tions be explicitly undefined is that some computers have more than one pro-
cessor and are capable of performing several computations in parallel. As the
price of CPU’s continues to fall, both in absolute terms and relative to to-
tal system cost, multi-CPU systems will become more and more common.
Consider the following block, where f is assumed to be a horrendously com-
plicated function declared in an outer block:

begin [1:4]real x;
int a, b, c, d;
read((a, b, c, d));
x := (f(a), f(b), f(c), f(d))

end

On a computer with four (or more) CPUs, the Algol 68 compiler might
decide to have f(a), f(b), f(c), and f(d) all evaluated simultaneously, each on
its own CPU. If the language required f(a) to be evaluated before f(b), this
would be impossible.

Some of the constructions that are evaluated collaterally are: Source and
destination in assignments; operands of a dyadic operator; elements of a row
display; fields of a structure display; actual parameters in a call; from, to,
and by parts of a for statement; subscripts and bounds in a slice; upper and
lower bounds in an array declarations; array to be sliced and its subscripts;
procedure to be called and its parameters; declarations separated by commas;
and units of a collateral clause.

61

10.1 Collateral Clauses
A collateral clause is a list of units separated by commas and enclosed

by begin and end, or by parentheses. The order in which the units of a
collateral clause are evaluated is expressly undefined. An important kind
of collateral clause is one composed of statements (technically void units).
Whereas the statements of a serial clause are executed sequentially, the
execution order of the statements in a collateral clause is explicitly undefined.
An example of a void collateral clause is:

begin k := 3, x := 3.14, s := ˝a˝ end

Consider the following two programs; the first contains a closed clause, and
the second contains a collateral clause:

begin /c program 1 /c
int k := 0;
(k:=k+1; k := k+1);
print (k)

end

begin /c program 2 /c
int k := 0;
(k := k+1, k := k+1);
print (k)

end

The only difference between the two programs is the use of a semicolon
versus the use of a comma between the assignments. There is only one tiny
spot of ink in typography, but a world of difference in meaning, as we shall
see.

The first program prints 2, as you would expect; the second program
requires closer scrutiny. Since the order of evaluation of the units in a
collateral clause is undefined, the first one might be completed before the
second one was started, giving 2 as an answer. However, on a computer with
two CPUs the compiler might arrange to give each CPU one unit to process
with the following sequence of actions occurring.

1) CPU 1 fetches k into its accumulator;
2) CPU 2 fetches k into its accumulator;
3) CPU 1 adds 1 to its accumulator;
4) CPU 2 adds 1 to its accumulator;
5) CPU 1 stores 1 into k ;
6) CPU 2 stores 1 into k .

62

The result is that k becomes 1 instead of 2. Depending upon the order
of evaluation, the second program may print 1 or 2. Random numbers are
very useful in computer science, but this is not a recommended technique for
producing them. On the other hand,

begin int m := 0, n := 0;
(m := m+1, n := n+1);
print((m, n))

end

operates correctly no matter what the order of evaluation is. The moral of
this story is: Collateral clauses are an important programming technique for
exploiting parallel processing, but some care is required in their use.

It should be noted, however, that race conditions of this kind are not
unique to Algol 68; any language or system permitting parallel processes
unrestricted access to a common data base can preduce the same peculiar
effects. To be safe, one should avoid using collateral clauses which have an
execution order that matters, or which modify each other’s variables.

Collateral clauses may be nested, of course, allowing more complicated
mixtures of collateral-serial execution to be described. For example,

(a; (b, (c; d), ((e, f); g)); h)

describes the fellowing situation (the letters are assumed to be void units, for
example, procedure calls or closed clauses). First a is executed. When a is
finished, three actions proceed collaterally:

1) b
2) (c;d)
3) ((e,f); g)

If enough CPUs are available, b, c, e, and f may all begin at once. When
c finishes, d may start. When e and f are both finished, g may start. If e
finishes before f, then g must be held up until f is also done. When b, c, ,d, e,
f, and g are all completed, h begins.

63

10.2 Synchronized Parallel Processing

Collateral clauses are primarily useful for allowing independent, non-
communicating processes to run in parallel. For some applications however,
the processes must communicate with each other. Typical examples are
producer-consumer problems, where one process fills a shared buffer and
the other one empties it. The two processes need to be synchronized to
ensure that the producer stops when the buffer is full and that the consumer
restarts the producer when it has (partially) emptied it again.

Dijkstra [4] has described a general synchronization method for parallel
processing based on semaphores, and operators that increment and decre-
ment them. An attempt to decrement a semaphore which has value 0 causes
the decrementing process to be stopped. Algol 68 provides a mode sema
(for semaphore) and two operators, up and down, to increment and decre-
ment variables of mode sema. These are given in rr 10.2.4.

When semaphores are used in a collateral clause, the symbol par must
appear directly before the opening begin or parenthesis. This is to warn the
compiler. Such clauses are then called parallel clauses (RB 3.3.1c).

As a simple example of parallel processing using semaphores, consider
the problem of two processes running in parallel, each of which needs
exclusive access to a certain data base during part of its computation cycle.
(Readers unfamiliar with this type of synchronization problem should see
Brinch Hansen [2]. A semaphore, mutex, initialized to 1 (using the level

64

operator) is used here to achieve mutual exclusion.

begin sema mutex := level 1;
bool not finished := true;
/c declare the data base here /c
proc producer = void:

while not finished
do down mutex;

/c insert item into data base here /c
up mutex

od;
proc consumer = void:

while not finished
do down mutex;

/c remove item from data base here /c
up mutex

od;
/c here is the parallel processing /c
par(producer, consumer)

end

11. Where To From Here?

Readers who want to continue their study of Algol 68 may wish to
read Lindsey [8], Woodward and Bond [15], Woodward [14], Valentine [11],
Branquart et al. [1], Cleaveland and Uzgalis [3], Peck [10], and the Revised
Report, in roughly that order. For those readers who want a book length
exposition, Learner and Powell [6], Peck [9], and Lindsey and van der Meulen
[7] are recommended. For those who read German, van der Meulen and
Kühling [12] is a good introductory text. In these references, beware of minor
differences between the Revised Report, which is described in this article, and
the original report, which is described in most of the references.

An even better way to learn Algol 68 is to write programs in this
language. Compilers for various computers exist, including B6700, and
ICL 1900. A fairly large subset of the language is even being implemented on
a minicomputer (PDP-11).

65

ACKNOWLEDGMENTS
I wish to express my appreciation to the numerous people who have read

and criticized this article, especially Jack Alanen, Willem Paul de Roever,
Dick Grune, Ad König, Kees Koster, Efrem Mallach, John Peck, Mitchell
Tanenbaum, Robert Uzgalis, Reind van de Riet, A. van Wijngaarden and P.
M. Woodward.

References
[1] Branquart, P.; Lewi, J.; Sintzoff, M.; and Wodon, P. L. ”The

composition of semantics in ALGOL 68,” Comm. ACM 14, 11 (Nov. 1971),
697-707.

[2] Brinch Hansen, Per. ”Concurrent programming concepts,” Comput-
ing Surveys 5, 4 (Dec. 1973), 223-245.

[3] Cleaveland, J. C.; and Uzgalis, R. C. Grammars for programming
languages: What every programmer should know about grammar, American
Elsevier Publ. Co., New York, 1976.

[4] Dijkstra, E. W. ”Cooperating sequential processes,” In Programming
language, F. Genuys (Ed.), Academic Press, New York, 1968.

[5] Jensen, J.; and Naur, P. ”Call by name: An implementation of
ALGOL 60 procedures,” BIT 1, (1961), 38.

[6] Learner, A.; and POWELL, A. J. An introduction to ALOOL 68
through problems, MacMillan, New York, 1974.

[7] Lindsey, C. H.; and van der Meulen, S. G. An informal introduction
to ALGOL 68. North Holland Publ. Co., Amsterdam, The Netherlands,
1971.

[8] Lindsey, C. H. ”ALGOL 68 with fewer tears,” Computer J. 15,
(1972), 176-188.

[9] Peck, J. E. L. An ALGOL 68 companion, Univ. of British Columbia,
1972.

[10] Peck, J. E. L. ”Two-level grammars in action,” in Proc. IFIP
Congress 74, NorthHolland Publ. Co., Amsterdam, The Netherlands, 1974,
317-321.

[11] Valentine, S. H. ”Comparative notes on ALGOL 68 and PL/I,”
Computer J. 17, (1974), 325331.

[12] van der Meulen, S. G.; and Kühling, P. Programmieren in ALGOL
68. Walter de Gruyter & Co., New York, 1974 (in German).

[13] van Wijngaarden, A.; Mailloux, B. J.; Peck, J. E. L.; Koster,
C.H.A.; Sintzoff, M.; Lindsey, C. H.; Meertens, L. G. L. T.; and Fisker, R.
G. ”Revised report on the Algorithmic Language Algol 68,” Acta Informatica
5, (1975), 1-236.

66

[14] Woodward, P. M. ”Practical experience with ALGOL 68” Software-
Practice and Experience, 2, (1972), pp. 79.

[15] Woodward, P. M.; and Bond, S. G. ALGOL 68-R Users Guide, 2nd
Ed. Her Majesty’s Stationery Office, London, England, 1974.

[16] Pagan, F. G., A practical Guide to Algol 68, John Wiley Inc., New
York ,1976.

67

